List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2186353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lodide-substitution-induced phase transition of chemical-vapor-deposited MoS2. Journal of Materials Chemistry C, 2022, 10, 1638-1644.	5.5	1
2	Systematic study and effective improvement of voltammetry for accurate electrochemical window measurement of solid electrolytes. Electrochimica Acta, 2022, 414, 140210.	5.2	1
3	Lithium Storage Mechanism and Application of Micronâ€Sized Latticeâ€Reversible Binary Intermetallic Compounds as Highâ€Performance Flexible Lithiumâ€Ion Battery Anodes. Small, 2022, 18, e2105172.	10.0	6
4	Gate-tunable contact-induced Fermi-level shift in semimetal. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119016119.	7.1	7
5	High-temperature epitaxial graphite deposition on macroscopic superaligned carbon nanotube structures by a one-step self-heating method. Carbon, 2021, 171, 837-844.	10.3	2
6	On-chip torsion balances with femtonewton force resolution at room temperature enabled by carbon nanotube and graphene. Science Advances, 2021, 7, .	10.3	3
7	Strongly enhanced infrared emission of a black coating doped with multiwall carbon nanotubes. Infrared Physics and Technology, 2021, 113, 103651.	2.9	5
8	Interfacial Gated Graphene Photodetector with Broadband Response. ACS Applied Materials & Interfaces, 2021, 13, 22796-22805.	8.0	16
9	Boosting the Oxidative Potential of Polyethylene Clycolâ€Based Polymer Electrolyte to 4.36ÂV by Spatially Restricting Hydroxyl Groups for Highâ€Voltage Flexible Lithiumâ€Ion Battery Applications. Advanced Science, 2021, 8, e2100736.	11.2	39
10	Self-standing carbon nanotube aerogels with amorphous carbon coating as stable host for lithium anodes. Carbon, 2021, 177, 181-188.	10.3	30
11	Spray coating of a perfect absorber based on carbon nanotube multiscale composites. Carbon, 2021, 178, 616-624.	10.3	22
12	Reconfigurable Tunneling Transistors Heterostructured by an Individual Carbon Nanotube and MoS ₂ . Nano Letters, 2021, 21, 6843-6850.	9.1	11
13	Efficient polysulfide trapping in lithium–sulfur batteries using ultrathin and flexible BaTiO ₃ /graphene oxide/carbon nanotube layers. Nanoscale, 2021, 13, 6863-6870.	5.6	3
14	Toward an Intelligent Synthesis: Monitoring and Intervening in the Catalytic Growth of Carbon Nanotubes. Journal of the American Chemical Society, 2021, 143, 17607-17614.	13.7	3
15	Enhanced Visible-Light Absorption and Photocurrent Generation of Three-Dimensional Metal–Dielectric Hybrid-Structured Films. ACS Applied Energy Materials, 2021, 4, 10542-10552.	5.1	3
16	Substrate Engineering-Tailored Fabrication of Aligned Graphene Nanoribbon Arrays: Implications for Graphene Electronic Devices. ACS Applied Nano Materials, 2021, 4, 13838-13847.	5.0	3
17	Macroscopic Carbon Nanotube Structures for Lithium Batteries. Small, 2020, 16, e1902719.	10.0	35
18	Preparation and enhanced photoelectrocatalytic properties of a three-dimensional TiO2-Au porous structure fabricated using superaligned carbon nanotube films. International Journal of Hydrogen Energy, 2020, 45, 31963-31975.	7.1	7

#	Article	IF	CITATIONS
19	The Influence of Carbon Nanotube's Conductivity and Diameter on Its Thermionic Electron Emission. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2070048.	1.8	0
20	Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films. Nanoscale, 2020, 12, 24259-24265.	5.6	9
21	The Influence of Carbon Nanotube's Conductivity and Diameter on Its Thermionic Electron Emission. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000069.	1.8	1
22	Optical Phonon Scattering Dominated Transport in Individual Suspended Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2020, 257, 2000103.	1.5	1
23	Bidirectional micro-actuators based on eccentric coaxial composite oxide nanofiber. Nano Research, 2020, 13, 2451-2459.	10.4	5
24	Progress and challenges of flexible lithium ion batteries. Journal of Power Sources, 2020, 454, 227932.	7.8	89
25	Mixed-Dimensional Vertical Point p <i>–</i> n Junctions. ACS Nano, 2020, 14, 3181-3189.	14.6	18
26	Broadband omnidirectional perfect absorber based on carbon nanotube films. Carbon, 2020, 161, 510-516.	10.3	15
27	Mesoporous carbon nanotube aerogel-sulfur cathodes: A strategy to achieve ultrahigh areal capacity for lithium-sulfur batteries via capillary action. Carbon, 2020, 166, 183-192.	10.3	38
28	Continuous, Ultra-lightweight, and Multipurpose Super-aligned Carbon Nanotube Tapes Viable over a Wide Range of Temperatures. Nano Letters, 2019, 19, 6756-6764.	9.1	17
29	Amorphous MoS ₂ Photodetector with Ultra-Broadband Response. ACS Applied Electronic Materials, 2019, 1, 1314-1321.	4.3	65
30	High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity. Nano Research, 2019, 12, 1855-1861.	10.4	9
31	Emission Enhancement from CdSe/ZnS Quantum Dots Induced by Strong Localized Surface Plasmonic Resonances without Damping. Journal of Physical Chemistry Letters, 2019, 10, 2113-2120.	4.6	9
32	Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6586-6593.	7.1	20
33	Sub-10 nm Monolayer MoS ₂ Transistors Using Single-Walled Carbon Nanotubes as an Evaporating Mask. ACS Applied Materials & Interfaces, 2019, 11, 11612-11617.	8.0	27
34	Phase-transition modulated, high-performance dual-mode photodetectors based on WSe ₂ /VO ₂ heterojunctions. Applied Physics Reviews, 2019, 6, 041407.	11.3	50
35	Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nature Catalysis, 2018, 1, 326-331.	34.4	61
36	Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. Journal of Power Sources, 2018, 389, 169-177.	7.8	107

#	Article	IF	CITATIONS
37	CO2 oxidation of carbon nanotubes for lithium-sulfur batteries with improved electrochemical performance. Carbon, 2018, 132, 370-379.	10.3	48
38	Conversion of Multi-layered MoTe2 Transistor Between P-Type and N-Type and Their Use in Inverter. Nanoscale Research Letters, 2018, 13, 291.	5.7	30
39	Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale, 2018, 10, 19972-19978.	5.6	46
40	TiO ₂ -Nanocoated Black Phosphorus Electrodes with Improved Electrochemical Performance. ACS Applied Materials & amp; Interfaces, 2018, 10, 36058-36066.	8.0	23
41	Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. Nano Research, 2018, 11, 5812-5822.	10.4	13
42	Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale, 2018, 10, 15195-15204.	5.6	60
43	Three-Dimensional Carbon Nanotube/Transition-Metal Oxide Sponges as Composite Electrodes with Enhanced Electrochemical Performance. ACS Applied Nano Materials, 2018, 1, 2997-3005.	5.0	20
44	Carbon Nanotube Film Gate in Vacuum Electronic Devices. Nano Letters, 2018, 18, 4691-4696.	9.1	8
45	MnO2 nanoparticles anchored on carbon nanotubes with hybrid supercapacitor-battery behavior for ultrafast lithium storage. Carbon, 2018, 139, 145-155.	10.3	77
46	Ultrathin HfO2-modified carbon nanotube films as efficient polysulfide barriers for Li-S batteries. Carbon, 2018, 139, 896-905.	10.3	33
47	Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. Carbon, 2018, 139, 1136-1143.	10.3	78
48	Sandwich-structured cathodes with cross-stacked carbon nanotube films as conductive layers for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 4047-4057.	10.3	11
49	Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates. Nano Research, 2017, 10, 1804-1818.	10.4	12
50	Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes. ACS Nano, 2017, 11, 1257-1263.	14.6	23
51	Inverse Hysteresis and Ultrasmall Hysteresis Thinâ€Film Transistors Fabricated Using Sputtered Dielectrics. Advanced Electronic Materials, 2017, 3, 1600483.	5.1	9
52	Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale, 2017, 9, 6716-6723.	5.6	108
53	Liâ€& Batteries: Ultrathin MnO ₂ /Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfideâ€Trapping Shield for Highâ€Performance Li–S Batteries (Adv. Funct. Mater. 18/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
54	Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode. ACS Applied Materials & Interfaces, 2017, 9, 18945-18955.	8.0	20

#	Article	IF	CITATIONS
55	Active coherent control of nanoscale light confinement: Modulation of plasmonic modes and position of hotspots for surface-enhanced Raman scattering detection. Nano Research, 2017, 10, 2934-2943.	10.4	1
56	Self-Expansion Construction of Ultralight Carbon Nanotube Aerogels with a 3D and Hierarchical Cellular Structure. Small, 2017, 13, 1700966.	10.0	10
57	Ultrathin MnO ₂ /Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfideâ€Trapping Shield for Highâ€Performance Li–S Batteries. Advanced Functional Materials, 2017, 27, 1606663.	14.9	306
58	Super-aligned carbon nanotube films with a thin metal coating as highly conductive and ultralight current collectors for lithium-ion batteries. Journal of Power Sources, 2017, 351, 160-168.	7.8	22
59	SWCNTâ€MoS ₂ â€&WCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469.	21.0	32
60	Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures. ACS Applied Materials & Interfaces, 2017, 9, 32369-32376.	8.0	25
61	Low-energy transmission electron diffraction and imaging of large-area graphene. Science Advances, 2017, 3, e1603231.	10.3	35
62	Selfâ€assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures. Advanced Materials, 2017, 29, 1603549.	21.0	69
63	Pronounced Photovoltaic Response from Multi-layered MoTe2 Phototransistor with Asymmetric Contact Form. Nanoscale Research Letters, 2017, 12, 603.	5.7	7
64	Dielectric-Like Behavior of Graphene in Au Plasmon Resonator. Nanoscale Research Letters, 2016, 11, 541.	5.7	1
65	Radiation effects and radiation hardness solutions for single-walled carbon nanotube-based thin film transistors and logic devices. Carbon, 2016, 108, 363-371.	10.3	21
66	Observation of Charge Generation and Transfer during CVD Growth of Carbon Nanotubes. Nano Letters, 2016, 16, 4102-4109.	9.1	30
67	Three-Dimensional Flexible Complementary Metal–Oxide–Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks. ACS Nano, 2016, 10, 2193-2202.	14.6	66
68	Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries. Nanotechnology, 2016, 27, 075401.	2.6	20
69	Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2016, 10, 1300-1308.	14.6	196
70	Mesoporous Li ₄ Ti ₅ O ₁₂ nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries. Nanoscale, 2016, 8, 617-625.	5.6	46
71	Binder-free polymer encapsulated sulfur–carbon nanotube composite cathodes for high performance lithium batteries. Carbon, 2016, 96, 1053-1059.	10.3	64
72	Study of Carbon Nanotubes as Etching Masks and Related Applications in the Surface Modification of GaAsâ€based Lightâ€Emitting Diodes. Small, 2015, 11, 4111-4116.	10.0	8

#	Article	IF	CITATIONS
73	Demonstration of nonvolatile multilevel memory in ambipolar carbon nanotube thin-film transistors. Applied Physics Express, 2015, 8, 065101.	2.4	2
74	Interface dipole enhancement effect and enhanced Rayleigh scattering. Nano Research, 2015, 8, 303-319.	10.4	12
75	True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Research, 2015, 8, 2721-2732.	10.4	34
76	Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application. Light: Science and Applications, 2015, 4, e296-e296.	16.6	53
77	Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates. Nano Research, 2015, 8, 2024-2032.	10.4	4
78	Linearly Polarized Light Emission from Quantum Dots with Plasmonic Nanoantenna Arrays. Nano Letters, 2015, 15, 2951-2957.	9.1	51
79	Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale, 2015, 7, 10178-10185.	5.6	55
80	Load Characteristics of a Suspended Carbon Nanotube Film Heater and the Fabrication of a Fast-Response Thermochromic Display Prototype. ACS Nano, 2015, 9, 3753-3759.	14.6	39
81	Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics. Nanoscale, 2015, 7, 17693-17701.	5.6	26
82	Large area nanoscale metal meshes for use as transparent conductive layers. Nanoscale, 2015, 7, 16508-16515.	5.6	7
83	Broadband asymmetric transmission of optical waves from spiral plasmonic metamaterials. Applied Physics Letters, 2014, 104, .	3.3	29
84	Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles. Nanoscale Research Letters, 2014, 9, 7.	5.7	23
85	Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering. Nanoscale Research Letters, 2014, 9, 25.	5.7	17
86	Surface-plasmon-enhanced GaN-LED based on the multilayered rectangular nano-grating. Optics Communications, 2014, 322, 66-72.	2.1	25
87	Exploration of yttria films as gate dielectrics in sub-50 nm carbon nanotube field-effect transistors. Nanoscale, 2014, 6, 11316-11321.	5.6	18
88	Trap-State-Dominated Suppression of Electron Conduction in Carbon Nanotube Thin-Film Transistors. ACS Nano, 2014, 8, 9597-9605.	14.6	36
89	Vapor-Condensation-Assisted Optical Microscopy for Ultralong Carbon Nanotubes and Other Nanostructures. Nano Letters, 2014, 14, 3527-3533.	9.1	29
90	Mâ€shaped Grating by Nanoimprinting: A Replicable, Largeâ€Area, Highly Active Plasmonic Surfaceâ€Enhanced Raman Scattering Substrate with Nanogaps. Small, 2014, 10, 1603-1611.	10.0	20

#	Article	IF	CITATIONS
91	Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Research, 2014, 7, 981-989.	10.4	15
92	AlGaInP light-emitting diodes with SACNTs as current-spreading layer. Nanoscale Research Letters, 2014, 9, 171.	5.7	7
93	Diameter distribution control of single-walled carbon nanotubes by etching ferritin nanoparticles. Applied Physics Express, 2014, 7, 055102.	2.4	4
94	Enhanced performance of graphene transistor with ion-gel top gate. Carbon, 2014, 68, 480-486.	10.3	23
95	Evaluating Bandgap Distributions of Carbon Nanotubes via Scanning Electron Microscopy Imaging of the Schottky Barriers. Nano Letters, 2013, 13, 5556-5562.	9.1	24
96	Graphene as discharge layer for electron beam lithography on insulating substrate. Applied Physics Letters, 2013, 103, 113107.	3.3	5
97	Excitation of Surface Plasmon Resonance in Composite Structures Based on Single-Layer Superaligned Carbon Nanotube Films. Journal of Physical Chemistry C, 2013, 117, 23190-23197.	3.1	12
98	The Dependence of Graphene Raman D-band on Carrier Density. Nano Letters, 2013, 13, 6170-6175.	9.1	138
99	Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nature Communications, 2013, 4, 2920.	12.8	71
100	Thermoacoustic Chips with Carbon Nanotube Thin Yarn Arrays. Nano Letters, 2013, 13, 4795-4801.	9.1	67
101	Modeling and optimization of ambipolar graphene transistors in the diffusive limit. Journal of Applied Physics, 2013, 114, 164508.	2.5	2
102	Surface-plasmon-enhanced GaN-LED based on the quasi-symmetrical planar waveguide structure. Optics Communications, 2013, 311, 311-316.	2.1	7
103	Isotropic spiral plasmonic metamaterial for sensing large refractive index change. Optics Letters, 2013, 38, 3133.	3.3	50
104	Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating. Optics Express, 2013, 21, 13492.	3.4	52
105	Fabrication of Allâ€Carbon Nanotube Electronic Devices on Flexible Substrates Through CVD and Transfer Methods. Advanced Materials, 2013, 25, 6050-6056.	21.0	24
106	Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure. Optics Express, 2012, 20, 15818.	3.4	22
107	Efficient Fabrication of Carbon Nanotube Micro Tip Arrays by Tailoring Cross-Stacked Carbon Nanotube Sheets. Nano Letters, 2012, 12, 2071-2076.	9.1	12
108	Direct Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes in Scanning Electron Microscopy. Nano Letters, 2012, 12, 4095-4101.	9.1	61

#	Article	IF	CITATIONS
109	Binderâ€Free LiCoO ₂ /Carbon Nanotube Cathodes for Highâ€Performance Lithium Ion Batteries. Advanced Materials, 2012, 24, 2294-2298.	21.0	271
110	A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. Nanotechnology, 2011, 22, 025502.	2.6	36
111	UV-based nanoimprinting lithography with a fluorinated flexible stamp. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 021015.	1.2	6
112	Single Ring Interferometer Configuration With Doubled Free-Spectral Range. IEEE Photonics Technology Letters, 2011, 23, 79-81.	2.5	7
113	Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Optics Letters, 2011, 36, 1542.	3.3	139
114	Compact and low cross-talk silicon-on-insulator crossing using periodic dielectric waveguide: erratum. Optics Letters, 2011, 36, 2308.	3.3	0
115	Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. Composites Science and Technology, 2011, 72, 85-90.	7.8	22
116	In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts. Nano Research, 2011, 4, 767-779.	10.4	91
117	Superaligned Carbon Nanotube Arrays, Films, and Yarns: A Road to Applications. Advanced Materials, 2011, 23, 1154-1161.	21.0	391
118	A graphene oxide–carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials. Nanotechnology, 2011, 22, 385704.	2.6	3
119	High frequency response of carbon nanotube thin film speaker in gases. Journal of Applied Physics, 2011, 110, .	2.5	61
120	Fabrication of Dense Horizontally Aligned Arrays of Single-Wall Carbon Nanotubes from Vertically Aligned Arrays. Applied Physics Express, 2011, 4, 015101.	2.4	4
121	Superaligned arrays, films, and yarns of carbon nanotubes: a road toward applications. Scientia Sinica: Physica, Mechanica Et Astronomica, 2011, 41, 390-403.	0.4	3
122	Flexible, Stretchable, Transparent Conducting Films Made from Superaligned Carbon Nanotubes. Advanced Functional Materials, 2010, 20, 885-891.	14.9	363
123	Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon, 2010, 48, 260-266.	10.3	195
124	In situ fabrication of HfC-decorated carbon nanotube yarns and their field-emission properties. Carbon, 2010, 48, 531-537.	10.3	19
125	Super-aligned carbon nanotube films as aligning layers and transparent electrodes for liquid crystal displays. Carbon, 2010, 48, 1876-1879.	10.3	100
126	A general surface-treatment-free approach to fabrication of alignment layers using a super-aligned carbon nanotube film template. Chinese Physics B, 2010, 19, 088104.	1.4	2

#	Article	IF	CITATIONS
127	Selective fabrication of quasi-parallel single-walled carbon nanotubes on silicon substrates. Nanotechnology, 2010, 21, 395602.	2.6	5
128	High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnology, 2010, 21, 345701.	2.6	85
129	Highly Sensitive Surface-Enhanced Raman Scattering Substrate Made from Superaligned Carbon Nanotubes. Nano Letters, 2010, 10, 1747-1753.	9.1	157
130	Compact and low cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide. Optics Letters, 2010, 35, 3904.	3.3	17
131	Design of Light Guide Plate Using White Light Emitting Diode for Direct Illumination of Liquid Crystal Display. , 2010, , .		0
132	Periodically striped films produced from super-aligned carbon nanotube arrays. Nanotechnology, 2009, 20, 335705.	2.6	34
133	Crossâ€Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO ₂ Nanoparticles: A Novel Binderâ€Free and Highâ€Capacity Anode Material for Lithiumâ€Ion Batteries. Advanced Materials, 2009, 21, 2299-2304.	21.0	444
134	Fast Highâ€Temperature Response of Carbon Nanotube Film and Its Application as an Incandescent Display. Advanced Materials, 2009, 21, 3563-3566.	21.0	91
135	A process study of electron beam nano-lithography and deep etching with an ICP system. Science in China Series D: Earth Sciences, 2009, 52, 1665-1671.	0.9	2
136	Thermal Analysis Study of the Growth Kinetics of Carbon Nanotubes and Epitaxial Graphene Layers on Them. Journal of Physical Chemistry C, 2009, 113, 9623-9631.	3.1	32
137	Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates. Nano Letters, 2009, 9, 3137-3141.	9.1	516
138	Controlled Fabrication of High-Quality Carbon Nanoscrolls from Monolayer Graphene. Nano Letters, 2009, 9, 2565-2570.	9.1	312
139	Catalyst-Free Growth of Quasi-Aligned Nanorods of Single Crystal Cu ₃ Mo ₂ O ₉ and Their Catalytic Properties. Inorganic Chemistry, 2009, 48, 1243-1249.	4.0	28
140	Achromatic generation of radially polarized beams in visible range using segmented subwavelength metal wire gratings. Optics Letters, 2009, 34, 3361.	3.3	13
141	Growth mechanism of Y-junctions and related carbon nanotube junctions synthesized by Au-catalyzed chemical vapor deposition. Carbon, 2008, 46, 440-444.	10.3	22
142	Measuring the Work Function of Carbon Nanotubes with Thermionic Method. Nano Letters, 2008, 8, 647-651.	9.1	199
143	Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers. Nano Letters, 2008, 8, 4539-4545.	9.1	472
144	Superaligned Carbon Nanotube Grid for High Resolution Transmission Electron Microscopy of Nanomaterials. Nano Letters, 2008, 8, 2564-2569.	9.1	57

#	Article	IF	CITATIONS
145	The exposure process study of 100KV JBX-6300LS electron-beam nanolithograph system. , 2008, , .		0
146	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. Journal of Materials Research, 2008, 23, 2975-2983.	2.6	86
147	Barium-functionalized multiwalled carbon nanotube yarns as low-work-function thermionic cathodes. Applied Physics Letters, 2008, 92, .	3.3	28
148	Laser direct writing carbon nanotube arrays on transparent substrates. Applied Physics Letters, 2007, 90, 133108.	3.3	26
149	Development of the high voltage e-beam lithography system. , 2007, , .		1
150	Direct thermal oxidization evaporation growth, structure, and optical properties of single-crystalline nanobelts of molybdenum trioxide. Journal of Materials Research, 2007, 22, 1609-1617.	2.6	22
151	Transition of Single-Walled Carbon Nanotubes from Metallic to Semiconducting in Field-Effect Transistors by Hydrogen Plasma Treatment. Nano Letters, 2007, 7, 1622-1625.	9.1	50
152	Measuring the stress in field-emitting carbon nanotubes. Nanotechnology, 2006, 17, 1994-1998.	2.6	23
153	Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays. Advanced Materials, 2006, 18, 1505-1510.	21.0	563
154	LaB6 tip-modified multiwalled carbon nanotube as high quality field emission electron source. Applied Physics Letters, 2006, 89, 203112.	3.3	38
155	Shape-controlled synthesis of silver nanostructures. Nanotechnology, 2005, 16, 2412-2414.	2.6	20
156	Self-catalytic growth of aluminum borate nanowires. Chemical Physics Letters, 2003, 375, 632-635.	2.6	54
157	Polarized incandescent light emission from carbon nanotubes. Applied Physics Letters, 2003, 82, 1763-1765.	3.3	87
158	Transverse resistivity and Hall effect ofd-wave superconductors with twin boundaries: Numerical solutions of time-dependent Ginzburg-Landau equations in the presence of thermal noise. Physical Review B, 2002, 66, .	3.2	0
159	Spinning continuous carbon nanotube yarns. Nature, 2002, 419, 801-801.	27.8	1,023
160	Vortex dynamics of a d-wave superconductor with regular array of pinning centers. Physica C: Superconductivity and Its Applications, 2001, 364-365, 495-498.	1.2	1
161	Vortex state of a -wave superconductor with Zeeman coupling. Physica C: Superconductivity and Its Applications, 2000, 341-348, 221-224.	1.2	2
162	Subdominant pairing channels in unconventional superconductors: Ginzburg-Landau theory. Physical Review B, 1999, 60, 15364-15370.	3.2	9

#	Article	IF	CITATIONS
163	Vortex dynamics of ad+is-wave superconductor. Physical Review B, 1999, 60, 14577-14580.	3.2	5
164	Vortex structure for ad+is-wave superconductor. Physical Review B, 1999, 59, 613-618.	3.2	16
165	Conversion of Nickel Coated Carbon Nanotubes to Diamond under High Pressure and High Temperature. Japanese Journal of Applied Physics, 1998, 37, L1085-L1086.	1.5	11
166	Mössbauer Study of Catalytically Grown Carbon Nanotube. Chinese Physics Letters, 1998, 15, 68-69.	3.3	4
167	Synthesis of silicon nitride nanorods using carbon nanotube as a template. Applied Physics Letters, 1997, 71, 2271-2273.	3.3	191
168	Coating of Carbon Nanotube with Nickel by Electroless Plating Method. Japanese Journal of Applied Physics, 1997, 36, L501-L503.	1.5	117
169	Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction. Science, 1997, 277, 1287-1289.	12.6	1,272
170	Study on microstructure and interdiffusion behavior in Pb(FeNb)O3/Pt/Ti/SiO2/Si(100) multilayer films. Materials Research Bulletin, 1997, 32, 1247-1252.	5.2	1
171	Continuous synthesis and characterization of silicon carbide nanorods. Chemical Physics Letters, 1997, 265, 374-378.	2.6	212