
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2184696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries. ACS Energy Letters, 2022, 7, 490-513.	17.4	236
2	Luminescent Thin Films Enabled by CsPbX ₃ (X=Cl, Br, I) Precursor Solution. Chemistry - A European Journal, 2022, 28, .	3.3	2
3	A Robust Li-Intercalated Interlayer with Strong Electron Withdrawing Ability Enables Durable and High-Rate Li Metal Anode. ACS Energy Letters, 2022, 7, 1594-1603.	17.4	36
4	Electrolyte Solvation Structure Design for Sodium Ion Batteries. Advanced Science, 2022, 9, .	11.2	138
5	Switching Electrolyte Interfacial Model to Engineer Solid Electrolyte Interface for Fast Charging and Wideâ€Temperature Lithiumâ€Ion Batteries. Advanced Science, 2022, 9, .	11.2	24
6	Unraveling the New Role of an Ethylene Carbonate Solvation Shell in Rechargeable Metal Ion Batteries. ACS Energy Letters, 2021, 6, 69-78.	17.4	99
7	Electrolyteâ€Mediated Stabilization of Highâ€Capacity Microâ€6ized Antimony Anodes for Potassiumâ€lon Batteries. Advanced Materials, 2021, 33, e2005993.	21.0	96
8	Metal Catalyst to Construct Carbon Nanotubes Networks on Metal Oxide Microparticles towards Designing Highâ€Performance Electrode for Highâ€Voltage Lithiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2009122.	14.9	34
9	Lithiumâ€lon Desolvation Induced by Nitrate Additives Reveals New Insights into High Performance Lithium Batteries. Advanced Functional Materials, 2021, 31, 2101593.	14.9	100
10	Long-Lasting Solid Electrolyte Interphase for Stable Li-Metal Batteries. ACS Energy Letters, 2021, 6, 2153-2161.	17.4	41
11	Electrolyte Chemistry in 3D Metal Oxide Nanorod Arrays Deciphers Lithium Dendrite-Free Plating/Stripping Behaviors for High-Performance Lithium Batteries. Journal of Physical Chemistry Letters, 2021, 12, 4857-4866.	4.6	19
12	Electrolyte Issues in Lithium–Sulfur Batteries: Development, Prospect, and Challenges. Energy & Fuels, 2021, 35, 10405-10427.	5.1	64
13	Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced Cathode for Metal–Sulfur Batteries. Advanced Science, 2021, 8, e2101123.	11.2	27
14	Unraveling the New Role of Metal–Organic Frameworks in Designing Silicon Hollow Nanocages for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 40471-40480.	8.0	13
15	Lowâ€Temperature Electrolyte Design for Lithiumâ€lon Batteries: Prospect and Challenges. Chemistry - A European Journal, 2021, 27, 15842-15865.	3.3	106
16	Interfacial Model Deciphering Highâ€Voltage Electrolytes for High Energy Density, High Safety, and Fastâ€Charging Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2102964.	21.0	122
17	Quasi-compensatory effect in emerging anode-free lithium batteries. EScience, 2021, 1, 3-12.	41.6	48
18	Application of nanotechnology in multivalent ion-based batteries. Frontiers of Nanoscience, 2021, , 229-272	0.6	1

#	Article	IF	CITATIONS
19	Frontispiece: Lowâ€Temperature Electrolyte Design for Lithiumâ€Ion Batteries: Prospect and Challenges. Chemistry - A European Journal, 2021, 27, .	3.3	2
20	Crystal reconstruction of binary oxide hexagonal nanoplates: monocrystalline formation mechanism and high rate lithium-ion battery applications. Nanoscale, 2020, 12, 4366-4373.	5.6	8
21	Recent advances in nanostructured carbon for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 1604-1630.	10.3	130
22	Self-catalytic approach to construct graphitized carbon shell for metal oxide: In-situ triggering mechanism and high-performance lithium-ion batteries applications. Journal of Power Sources, 2020, 450, 227631.	7.8	14
23	Model-Based Design of Graphite-Compatible Electrolytes in Potassium-Ion Batteries. ACS Energy Letters, 2020, 5, 2651-2661.	17.4	88
24	Model-Based Design of Stable Electrolytes for Potassium Ion Batteries. ACS Energy Letters, 2020, 5, 3124-3131.	17.4	71
25	Additives Engineered Nonflammable Electrolyte for Safer Potassium Ion Batteries. Advanced Functional Materials, 2020, 30, 2001934.	14.9	77
26	Catalysis of silica-based anode (de-)lithiation: compositional design within a hollow structure for accelerated conversion reaction kinetics. Journal of Materials Chemistry A, 2020, 8, 12306-12313.	10.3	43
27	Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery. ACS Energy Letters, 2020, 5, 2256-2264.	17.4	175
28	Carbon Nanotubes Coupled with Metal Ion Diffusion Layers Stabilize Oxide Conversion Reactions in High-Voltage Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16276-16285.	8.0	14
29	Unraveling Metal Oxide Role in Exfoliating Graphite: New Strategy to Construct Highâ€Performance Grapheneâ€Modified SiO <i>_x</i> â€Based Anode for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1910657.	14.9	78
30	Electrolyte Engineering Enables High Stability and Capacity Alloying Anodes for Sodium and Potassium Ion Batteries. ACS Energy Letters, 2020, 5, 766-776.	17.4	134
31	An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters, 2020, 5, 807-816.	17.4	97
32	Toward the Sustainable Lithium Metal Batteries with a New Electrolyte Solvation Chemistry. Advanced Energy Materials, 2020, 10, 2000567.	19.5	111
33	Bio-inspired heteroatom-doped hollow aurilave-like structured carbon for high-performance sodium-ion batteries and supercapacitors. Journal of Power Sources, 2020, 461, 228128.	7.8	24
34	A Designed Durable Electrolyte for Highâ€Voltage Lithiumâ€Ion Batteries and Mechanism Analysis. Chemistry - A European Journal, 2020, 26, 7930-7936.	3.3	22
35	Engineering Sodium-Ion Solvation Structure to Stabilize Sodium Anodes: Universal Strategy for Fast-Charging and Safer Sodium-Ion Batteries. Nano Letters, 2020, 20, 3247-3254.	9.1	78
36	(Invited) SEI or Solvation Structure: What Determines Electrode Stability in Rechargeable Batteries?. ECS Meeting Abstracts, 2020, MA2020-02, 668-668.	0.0	0

#	Article	IF	CITATIONS
37	Micromagnetic Configuration of Variable Nanostructured Cobalt Ferrite: Modulating and Simulations toward Memory Devices. ACS Applied Materials & Interfaces, 2019, 11, 28442-28448.	8.0	6
38	Aqueous binder effects of poly(acrylic acid) and carboxy methylated cellulose on anode performance in lithium-ion batteries. New Journal of Chemistry, 2019, 43, 12555-12562.	2.8	5
39	Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries. ACS Energy Letters, 2019, 4, 2776-2781.	17.4	155
40	New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2019, 4, 2613-2622.	17.4	160
41	Understanding Ostwald Ripening and Surface Charging Effects in Solvothermallyâ€Prepared Metal Oxide–Carbon Anodes for High Performance Rechargeable Batteries. Advanced Energy Materials, 2019, 9, 1902194.	19.5	50
42	Bio-inspired self-breathable structure driven by the volumetric effect: an unusual driving force of metal sulfide for high alkaline ion storage capability. Journal of Materials Chemistry A, 2019, 7, 5677-5684.	10.3	17
43	Graphitic Nanocarbon with Engineered Defects for Highâ€Performance Potassiumâ€ŀon Battery Anodes. Advanced Functional Materials, 2019, 29, 1903641.	14.9	212
44	The magnetization reversal mechanism in electrospun tubular nickel ferrite: a chain-of-rings model for symmetric fanning. Nanoscale, 2019, 11, 13824-13831.	5.6	4
45	Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries. ACS Energy Letters, 2019, 4, 1584-1593.	17.4	117
46	Design and Mechanistic Study of Highly Durable Carbon-Coated Cobalt Diphosphide Core–Shell Nanostructure Electrocatalysts for the Efficient and Stable Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 20752-20761.	8.0	20
47	Lithium dendrite-free plating/stripping: a new synergistic lithium ion solvation structure effect for reliable lithium–sulfur full batteries. Chemical Communications, 2019, 55, 5713-5716.	4.1	24
48	Metal–Organic Coordination Strategy for Obtaining Metalâ€Decorated Moâ€Based Complexes: Multiâ€dimensional Structural Evolution and Highâ€Rate Lithiumâ€Ion Battery Applications. Chemistry - A European Journal, 2019, 25, 8813-8819.	3.3	16
49	New Organic Complex for Lithium Layered Oxide Modification: Ultrathin Coating, High-Voltage, and Safety Performances. ACS Energy Letters, 2019, 4, 656-665.	17.4	97
50	An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials, 2019, 29, 1805978.	14.9	109
51	Zinc-ion batteries: Materials, mechanisms, and applications. Materials Science and Engineering Reports, 2019, 135, 58-84.	31.8	604
52	Advanced and safer lithium-ion battery based on sustainable electrodes. Journal of Power Sources, 2018, 379, 53-59.	7.8	21
53	Electrochemical activation, voltage decay and hysteresis of Li-rich layered cathode probed by various cobalt content. Electrochimica Acta, 2018, 265, 115-120.	5.2	41
54	Rhombohedral NASICON-type Na _x Fe ₂ (SO ₄) ₃ for sodium ion batteries: comparison with phosphate and alluaudite phases. Journal of Materials Chemistry A, 2018, 6, 3919-3925.	10.3	38

#	Article	IF	CITATIONS
55	New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases. ACS Energy Letters, 2018, 3, 335-340.	17.4	217
56	Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li–S Batteries. ACS Nano, 2018, 12, 836-843.	14.6	76
57	Ceria-Induced Strategy To Tailor Pt Atomic Clusters on Cobalt–Nickel Oxide and the Synergetic Effect for Superior Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2018, 6, 7451-7457.	6.7	44
58	High alkaline ion storage capacity of hollow interwoven structured Sb/TiO ₂ particles: the galvanic replacement formation mechanism and volumetric buffer effect. Chemical Communications, 2018, 54, 4049-4052.	4.1	33
59	Advanced Metal Oxide@Carbon Nanotubes for Highâ€Energy Lithiumâ€Ion Full Batteries. Energy Technology, 2018, 6, 766-772.	3.8	16
60	Sustainable solid-state strategy to hierarchical core-shell structured Fe3O4@graphene towards a safer and green sodium ion full battery. Electrochimica Acta, 2018, 260, 882-889.	5.2	40
61	Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Materials for Li–S Batteries and beyond in Al–S Batteries. ACS Energy Letters, 2018, 3, 2899-2907.	17.4	224
62	Bioinspired Architectures and Heteroatom Doping To Construct Metalâ€Oxideâ€Based Anode for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 16902-16909.	3.3	20
63	Unique Co ₃ O ₄ /nitrogen-doped carbon nanospheres derived from metal–organic framework: insight into their superior lithium storage capabilities and electrochemical features in high-voltage batteries. Journal of Materials Chemistry A, 2018, 6, 12466-12474.	10.3	85
64	Phase Inversion Strategy to Flexible Freestanding Electrode: Critical Coupling of Binders and Electrolytes for High Performance Li–S Battery. Advanced Functional Materials, 2018, 28, 1802244.	14.9	64
65	Scalable Approach To Construct Free-Standing and Flexible Carbon Networks for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2017, 9, 8047-8054.	8.0	78
66	Constructing Dense SiO _{<i>x</i>} @Carbon Nanotubes versus Spinel Cathode for Advanced Highâ€Energy Lithiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 1165-1171.	3.4	44
67	High Tap Density Li ₄ Ti ₅ O ₁₂ Microspheres: Synthetic Conditions and Advanced Electrochemical Performance. Energy Technology, 2017, 5, 1680-1686.	3.8	16
68	Metal–Organic Framework-Based Separators for Enhancing Li–S Battery Stability: Mechanism of Mitigating Polysulfide Diffusion. ACS Energy Letters, 2017, 2, 2362-2367.	17.4	229
69	Review—Two-Dimensional Layered Materials for Energy Storage Applications. ECS Journal of Solid State Science and Technology, 2016, 5, Q3021-Q3025.	1.8	68
70	Alkaline Excess Strategy to NASICON-Type Compounds towards Higher-Capacity Battery Electrodes. Journal of the Electrochemical Society, 2016, 163, A1469-A1473.	2.9	34
71	Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2016, 1, 529-534.	17.4	51
72	Multilayer Approach for Advanced Hybrid Lithium Battery. ACS Nano, 2016, 10, 6037-6044.	14.6	83

#	Article	IF	CITATIONS
73	High surface area, mesoporous carbon for low-polarization, catalyst-free lithium oxygen battery. Solid State Ionics, 2015, 278, 133-137.	2.7	12
74	Fluorine-doped porous carbon-decorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability. Electrochimica Acta, 2015, 169, 291-299.	5.2	32
75	High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method. Nanoscale, 2015, 7, 8093-8100.	5.6	23
76	Green Strategy to Single Crystalline Anatase TiO ₂ Nanosheets with Dominant (001) Facets and Its Lithiation Study toward Sustainable Cobalt-Free Lithium Ion Full Battery. ACS Sustainable Chemistry and Engineering, 2015, 3, 3086-3095.	6.7	34
77	A sustainable iron-based sodium ion battery of porous carbon–Fe ₃ O ₄ /Na ₂ FeP ₂ O ₇ with high performance. RSC Advances, 2015, 5, 8793-8800.	3.6	74
78	An alluaudite Na2+2Fe2â^'(SO4)3(x= 0.2) derivative phase as insertion host for lithium battery. Electrochemistry Communications, 2015, 51, 19-22.	4.7	52
79	Lithiation of an Iron Oxideâ€Based Anode for Stable, Highâ€Capacity Lithiumâ€lon Batteries of Porous Carbon–Fe ₃ O ₄ /Li[Ni _{0.59} Co _{0.16} Mn _{0.25}]O <s Energy Technology, 2014, 2, 778-785.</s 	su ծ<i>։</i>82	b 44
80	High dispersion of TiO ₂ nanocrystals within porous carbon improves lithium storage capacity and can be applied batteries to LiNi _{0.5} Mn _{1.5} O ₄ . Journal of Materials Chemistry A, 2014, 2, 18938-18945.	10.3	22
81	Porous TiO ₂ nanoribbons and TiO ₂ nanoribbon/carbon dot composites for enhanced Li-ion storage. RSC Advances, 2014, 4, 12971-12976.	3.6	35
82	The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance. Chemical Communications, 2014, 50, 13307-13310.	4.1	69
83	A Physical Pulverization Strategy for Preparing a Highly Active Composite of CoO _{<i>x</i>} and Crushed Graphite for Lithium–Oxygen Batteries. ChemPhysChem, 2014, 15, 2070-2076.	2.1	10
84	Surfactant-Assisted Synthesis of Fe ₂ O ₃ Nanoparticles and F-Doped Carbon Modification toward an Improved Fe ₃ O ₄ @CF _{<i>x</i>} /LiNi _{0.5} Mn _{1.5} O _{4ACS Applied Materials & amp; Interfaces, 2014, 6, 15499-15509.}	b>Battery	. 72
85	Gradient V2O5 surface-coated LiMn2O4 cathode towards enhanced performance in Li-ion battery applications. Electrochimica Acta, 2014, 120, 390-397.	5.2	63
86	Hierarchical Li4Ti5O12 particles co-modified with C&N towards enhanced performance in lithium-ion battery applications. Electrochimica Acta, 2014, 116, 224-229.	5.2	42
87	Synthesis of N-doped carbon coated metal oxide nanoparticles for enhanced Li-ion storage ability. RSC Advances, 2013, 3, 15613.	3.6	22
88	Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium–oxygen battery application. Nanoscale, 2013, 5, 10390.	5.6	40
89	CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3954.	10.3	58
90	Facile synthesis of a Co ₃ O ₄ –carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 1141-1147.	10.3	169

#	Article	IF	CITATIONS
91	Sodium salt effect on hydrothermal carbonization of biomass: a catalyst for carbon-based nanostructured materials for lithium-ion battery applications. Green Chemistry, 2013, 15, 2722.	9.0	61
92	Coating of Al2O3 on layered Li(Mn1/3Ni1/3Co1/3)O2 using CO2 as green precipitant and their improved electrochemical performance for lithium ion batteries. Journal of Energy Chemistry, 2013, 22, 468-476.	12.9	10
93	Simultaneous surface coating and chemical activation of the Li-rich solid solution lithium rechargeable cathode and its improved performance. Electrochimica Acta, 2013, 113, 54-62.	5.2	42
94	Encapsulation of Metal Oxide Nanocrystals into Porous Carbon with Ultrahigh Performances in Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2013, 5, 2133-2136.	8.0	55
95	Fine control of titania deposition to prepare C@TiO2 composites and TiO2 hollow particles for photocatalysis and lithium-ion battery applications. Journal of Materials Chemistry, 2012, 22, 22135.	6.7	61
96	Deactivation of Ni/TiO2 catalyst in the hydrogenation of nitrobenzene in water and improvement in its stability by coating a layer of hydrophobic carbon. Journal of Catalysis, 2012, 291, 149-154.	6.2	122
97	Fabrication of Co(OH)2 coated Pt nanoparticles as an efficient catalyst for chemoselective hydrogenation of halonitrobenzenes. Journal of Colloid and Interface Science, 2012, 377, 322-327.	9.4	8
98	Knitting an oxygenated network-coat on carbon nanotubes from biomass and their applications in catalysis. Journal of Materials Chemistry, 2011, 21, 10929.	6.7	26
99	Steaming multiwalled carbon nanotubes via acid vapour for controllable nanoengineering and the fabrication of carbon nanoflutes. Chemical Communications, 2011, 47, 5223.	4.1	70
100	A new strategy for finely controlling the metal (oxide) coating on colloidal particles with tunable catalytic properties. Journal of Materials Chemistry, 2011, 21, 6654.	6.7	26
101	Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chemistry, 2011, 13, 839.	9.0	80
102	CO2-assisted template synthesis of porous hollow bi-phase γ-/α-Fe2O3 nanoparticles with high sensor property. Journal of Materials Chemistry, 2011, 21, 17776.	6.7	58
103	Electrochemical fabrication of Cu(OH)2 and CuO nanostructures and their catalytic property. Journal of Crystal Growth, 2011, 327, 251-257.	1.5	19
104	Reaction of hydrous inorganic metal salts in CO2 expanded ethanol: Fabrication of nanostructured materials via supercritical technology. Journal of Supercritical Fluids, 2011, 57, 137-142.	3.2	32
105	Selective hydrogenation of citral catalyzed with palladium nanoparticles in CO2-in-water emulsion. Green Chemistry, 2009, 11, 979.	9.0	28
106	Selective hydrogenation of unsaturated aldehydes in a poly(ethylene glycol)/compressed carbon dioxide biphasic system. Green Chemistry, 2008, 10, 1082.	9.0	26