## Valeria Tosello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2184093/publications.pdf Version: 2024-02-01



VALEDIA TOSELLO

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Î <sup>3</sup> -secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nature<br>Medicine, 2009, 15, 50-58.                                                                                            | 30.7 | 417       |
| 2  | Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL.<br>Nature Medicine, 2013, 19, 368-371.                                                                                                      | 30.7 | 304       |
| 3  | Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8947-8952. | 7.1  | 275       |
| 4  | DNA Hydroxymethylation Profiling Reveals that WT1 Mutations Result in Loss of TET2 Function in Acute Myeloid Leukemia. Cell Reports, 2014, 9, 1841-1855.                                                                                       | 6.4  | 237       |
| 5  | Direct Reversal of Glucocorticoid Resistance by AKT Inhibition in Acute Lymphoblastic Leukemia.<br>Cancer Cell, 2013, 24, 766-776.                                                                                                             | 16.8 | 220       |
| 6  | <i>ETV6</i> mutations in early immature human T cell leukemias. Journal of Experimental Medicine, 2011, 208, 2571-2579.                                                                                                                        | 8.5  | 184       |
| 7  | Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nature Medicine, 2015, 21, 1182-1189.                                                                                              | 30.7 | 180       |
| 8  | The TLX1 oncogene drives aneuploidy in T cell transformation. Nature Medicine, 2010, 16, 1321-1327.                                                                                                                                            | 30.7 | 139       |
| 9  | Alteration in Calcium Handling at the Subcellular Level inmdx Myotubes. Journal of Biological Chemistry, 2001, 276, 4647-4651.                                                                                                                 | 3.4  | 136       |
| 10 | The Side Population of Ovarian Cancer Cells Is a Primary Target of IFN-α Antitumor Effects. Cancer<br>Research, 2008, 68, 5658-5668.                                                                                                           | 0.9  | 121       |
| 11 | NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood, 2008, 112, 733-740.                                                                                                                                                    | 1.4  | 116       |
| 12 | Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment.<br>Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4216-4221.                                    | 7.1  | 113       |
| 13 | WT1 mutations in T-ALL. Blood, 2009, 114, 1038-1045.                                                                                                                                                                                           | 1.4  | 111       |
| 14 | Absence of Biallelic <i>TCR</i> γ Deletion Predicts Early Treatment Failure in Pediatric T-Cell Acute<br>Lymphoblastic Leukemia. Journal of Clinical Oncology, 2010, 28, 3816-3823.                                                            | 1.6  | 93        |
| 15 | Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling.<br>Biochemical Journal, 2001, 355, 1.                                                                                                    | 3.7  | 92        |
| 16 | Targeting Nonclassical Oncogenes for Therapy in T-ALL. Cancer Cell, 2012, 21, 459-472.                                                                                                                                                         | 16.8 | 84        |
| 17 | The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Therapeutic Advances in Hematology, 2013, 4, 199-210.                                                                | 2.5  | 76        |
| 18 | Differential expression of CCR7 defines two distinct subsets of human memory CD4+CD25+ Tregs.<br>Clinical Immunology, 2008, 126, 291-302.                                                                                                      | 3.2  | 46        |

VALERIA TOSELLO

| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Large and Dissimilar Repertoire of Melan-A/MART-1-Specific CTL in Metastatic Lesions and Blood of a<br>Melanoma Patient. Journal of Immunology, 2002, 169, 4017-4024.                                                                                                                  | 0.8  | 42        |
| 20 | Differential Regulation of Hypoxia-Induced CXCR4 Triggering during B-Cell Development and Lymphomagenesis. Cancer Research, 2007, 67, 8605-8614.                                                                                                                                       | 0.9  | 41        |
| 21 | Gene transfer in ovarian cancer cells: a comparison between retroviral and lentiviral vectors. Cancer<br>Research, 2002, 62, 6099-107.                                                                                                                                                 | 0.9  | 41        |
| 22 | Chemokine receptor expression in EBV-associated lymphoproliferation in hu/SCID mice: implications for CXCL12/CXCR4 axis in lymphoma generation. Blood, 2005, 105, 931-939.                                                                                                             | 1.4  | 38        |
| 23 | Interferon-α Gene Therapy by Lentiviral Vectors Contrasts Ovarian Cancer Growth Through<br>Angiogenesis Inhibition. Human Gene Therapy, 2005, 16, 957-970.                                                                                                                             | 2.7  | 34        |
| 24 | Mutational and functional genetics mapping of chemotherapy resistance mechanisms in relapsed acute<br>lymphoblastic leukemia. Nature Cancer, 2020, 1, 1113-1127.                                                                                                                       | 13.2 | 32        |
| 25 | Recombinant aequorin as tool for monitoring calcium concentration in subcellular compartments.<br>Methods in Enzymology, 2000, 327, 440-456.                                                                                                                                           | 1.0  | 28        |
| 26 | Effects of CD2 locus control region sequences on gene expression by retroviral and lentiviral vectors. Blood, 2001, 98, 3607-3617.                                                                                                                                                     | 1.4  | 28        |
| 27 | Recruitment of human umbilical vein endothelial cells and human primary fibroblasts into experimental tumors growing in SCID mice. Experimental Cell Research, 2003, 287, 28-38.                                                                                                       | 2.6  | 24        |
| 28 | Differential expression of constitutive and inducible proteasome subunits in human monocyteâ€derived<br>DC differentiated in the presence of IFNâ€ <i>α</i> or ILâ€4. European Journal of Immunology, 2009, 39, 56-66.                                                                 | 2.9  | 24        |
| 29 | CD8+αβ+T Cells That Lack Surface CD5 Antigen Expression Are a Major Lymphotactin (XCL1) Source in<br>Peripheral Blood Lymphocytes. Journal of Immunology, 2003, 171, 4528-4538.                                                                                                        | 0.8  | 21        |
| 30 | <i>WT1</i> loss attenuates the TP53-induced DNA damage response in T-cell acute lymphoblastic leukemia. Haematologica, 2018, 103, 266-277.                                                                                                                                             | 3.5  | 21        |
| 31 | miR-22-3p Negatively Affects Tumor Progression in T-Cell Acute Lymphoblastic Leukemia. Cells, 2020, 9, 1726.                                                                                                                                                                           | 4.1  | 17        |
| 32 | Epitope clustering in regions undergoing efficient proteasomal processing defines immunodominant<br>CTL regions of a tumor antigen. Clinical Immunology, 2007, 122, 163-172.                                                                                                           | 3.2  | 16        |
| 33 | Calcineurin complex isolated from T-cell acute lymphoblastic leukemia (T-ALL) cells identifies new signaling pathways including mTOR/AKT/S6K whose inhibition synergize with calcineurin inhibition to promote T-ALL cell death. Oncotarget, 2016, 7, 45715-45729.                     | 1.8  | 16        |
| 34 | Cross-talk between GLI transcription factors and FOXC1 promotes T-cell acute lymphoblastic leukemia dissemination. Leukemia, 2021, 35, 984-1000.                                                                                                                                       | 7.2  | 12        |
| 35 | Expression from cell type-specific enhancer-modified retroviral vectors after transduction: influence of marker gene stability. Gene, 2002, 283, 199-208.                                                                                                                              | 2.2  | 11        |
| 36 | Heterogeneous intracellular expression of B-cell receptor components in B-cell chronic lymphocytic<br>leukaemia (B-CLL) cells and effects of CD79b gene transfer on surface immunoglobulin levels in a<br>B-CLL-derived cell line. British Journal of Haematology, 2005, 130, 878-889. | 2.5  | 11        |

VALERIA TOSELLO

| #  | Article                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Insights on Metabolic Reprogramming and Its Therapeutic Potential in Acute Leukemia. International<br>Journal of Molecular Sciences, 2021, 22, 8738. | 4.1 | 11        |
| 38 | The HOX11/TLX1 Transcription Factor Oncogene Induces Chromosomal Aneuploidy in T-ALL Blood, 2009, 114, 142-142.                                      | 1.4 | 8         |
| 39 | A Novel Class of Activating Mutations in NOTCH1 in T-ALL Blood, 2007, 110, 694-694.                                                                  | 1.4 | 5         |
| 40 | An Oncogenic Metabolic Switch Mediates Resistance to NOTCH1 Inhibition in T-ALL. Blood, 2012, 120, 285-285.                                          | 1.4 | 5         |
| 41 | Inhibition of NOTCH1 Signaling Reverses Glucocorticoid Resistance in T-ALL Blood, 2007, 110, 151-151.                                                | 1.4 | 4         |
| 42 | Inhibition of NOTCH1 Signaling and Glucocorticoid Therapy in T-ALL. Blood, 2008, 112, 298-298.                                                       | 1.4 | 3         |
| 43 | Therapeutic Utility of PI3KÎ <sup>3</sup> Inhibition in Leukemogenesis and Tumor Cell Survival. Blood, 2012, 120, 1492-1492.                         | 1.4 | 1         |
| 44 | Interferon- Gene Therapy by Lentiviral Vectors Contrasts Ovarian Cancer Growth Through<br>Angiogenesis Inhibition. Human Gene Therapy, 2005, .       | 2.7 | 0         |
| 45 | Oncogenic Transcriptional Programs Controlled by TLX1/HOX11 and TLX3/HOX11L2 in T-ALL Blood, 2009, 114, 676-676.                                     | 1.4 | 0         |
| 46 | BCL11B Mutations In T-Cell Acute Lymphoblastic Leukemia. Blood, 2010, 116, 471-471.                                                                  | 1.4 | 0         |
| 47 | Identification of NOTCH1-Controlled Transcriptional Programs In Human T-Cell Development. Blood, 2010, 116, 2495-2495.                               | 1.4 | 0         |
| 48 | DNA Hydroxymethylation Profiling Reveals That WT1 Mutations Result in Loss of TET2 Function in<br>Acute Mydloid Laubamia, Blood, 2014, 124, 365,365  | 1.4 | 0         |

Acute Myeloid Leukemia. Blood, 2014, 124, 365-365.