
Matthew G Sampson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2183965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	21.4	2,421
2	Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Science Translational Medicine, 2015, 7, 316ra193.	12.4	304
3	Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney International, 2013, 83, 749-756.	5.2	268
4	Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations. American Journal of Human Genetics, 2012, 91, 987-997.	6.2	201
5	An eQTL Landscape of Kidney Tissue in Human Nephrotic Syndrome. American Journal of Human Genetics, 2018, 103, 232-244.	6.2	147
6	The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nature Genetics, 2019, 51, 117-127.	21.4	144
7	Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. New England Journal of Medicine, 2017, 376, 742-754.	27.0	120
8	The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nature Communications, 2020, 11, 1600.	12.8	120
9	Discovery of Autoantibodies Targeting Nephrin in Minimal Change Disease Supports a Novel Autoimmune Etiology. Journal of the American Society of Nephrology: JASN, 2022, 33, 238-252.	6.1	112
10	Integrative Genomics Identifies Novel Associations with APOL1 Risk Genotypes in Black NEPTUNE Subjects. Journal of the American Society of Nephrology: JASN, 2016, 27, 814-823.	6.1	110
11	Transethnic, Genome-Wide Analysis Reveals Immune-Related Risk Alleles and Phenotypic Correlates in Pediatric Steroid-Sensitive Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 2000-2013.	6.1	72
12	Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations. American Journal of Human Genetics, 2017, 101, 789-802.	6.2	63
13	Genomic Mismatch at <i>LIMS1</i> Locus and Kidney Allograft Rejection. New England Journal of Medicine, 2019, 380, 1918-1928.	27.0	63
14	<i>APOL1</i> -associated glomerular disease among African-American children: a collaboration of the Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE) cohorts. Nephrology Dialysis Transplantation, 2017, 32, gfw061.	0.7	60
15	Sex-specific and pleiotropic effects underlying kidney function identified from GWAS meta-analysis. Nature Communications, 2019, 10, 1847.	12.8	55
16	Complete Remission in the Nephrotic Syndrome Study Network. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 81-89.	4.5	53
17	<i>UBD</i> modifies <i>APOL1</i> -induced kidney disease risk. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3446-3451.	7.1	52
18	The Phenotypic Spectrum of Nephropathies Associated with Mutations in Diacylglycerol Kinase ε. Journal of the American Society of Nephrology: JASN, 2017, 28, 3066-3075.	6.1	50

#	Article	IF	CITATIONS
19	Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease. American Journal of Medical Genetics, Part A, 2010, 152A, 2618-2622.	1.2	49
20	Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2022, 101, 1126-1141.	5.2	46
21	Using Population Genetics to Interrogate the Monogenic Nephrotic Syndrome Diagnosis in a Case Cohort. Journal of the American Society of Nephrology: JASN, 2016, 27, 1970-1983.	6.1	41
22	A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis. Journal of Clinical Investigation, 2016, 126, 1067-1078.	8.2	41
23	Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney International, 2020, 98, 1308-1322.	5.2	39
24	Felic (CIP4b), a novel binding partner with the Src kinase Lyn and Cdc42, localizes to the phagocytic cup. Blood, 2003, 101, 2804-2809.	1.4	38
25	Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney. Nature Genetics, 2021, 53, 630-637.	21.4	37
26	Whole Exome Sequencing Reveals Novel PHEX Splice Site Mutations in Patients with Hypophosphatemic Rickets. PLoS ONE, 2015, 10, e0130729.	2.5	32
27	Renal and Cardiovascular Morbidities Associated with APOL1 Status among African-American and Non-African-American Children with Focal Segmental Glomerulosclerosis. Frontiers in Pediatrics, 2016, 4, 122.	1.9	29
28	Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci. Journal of the American Society of Nephrology: JASN, 2019, 30, 421-441.	6.1	27
29	A null variant in the apolipoprotein L3 gene is associated with non-diabetic nephropathy. Nephrology Dialysis Transplantation, 2018, 33, 323-330.	0.7	25
30	Defining nephrotic syndrome from an integrative genomics perspective. Pediatric Nephrology, 2015, 30, 51-63.	1.7	23
31	Damaging Variants in Proangiogenic Genes Impair Growth in Fetuses with Cardiac Defects. Journal of Pediatrics, 2019, 213, 103-109.	1.8	20
32	An investigation of <i>APOL1</i> risk genotypes and preterm birth in African American population cohorts. Nephrology Dialysis Transplantation, 2017, 32, gfw317.	0.7	17
33	Disruption of the exocyst induces podocyte loss and dysfunction. Journal of Biological Chemistry, 2019, 294, 10104-10119.	3.4	17
34	Copy Number Variant Analysis and Genome-wide Association Study Identify Loci with Large Effect for Vesicoureteral Reflux. Journal of the American Society of Nephrology: JASN, 2021, 32, 805-820.	6.1	17
35	Analyzing and reconciling colocalization and transcriptome-wide association studies from the perspective of inferential reproducibility. American Journal of Human Genetics, 2022, 109, 825-837.	6.2	17
36	Diagnoses of uncertain significance: kidney genetics in the 21st century. Nature Reviews Nephrology, 2020, 16, 616-618.	9.6	16

MATTHEW G SAMPSON

#	Article	IF	CITATIONS
37	Opportunities and Challenges of Genotyping Patients With Nephrotic Syndrome in the Genomic Era. Seminars in Nephrology, 2015, 35, 212-221.	1.6	15
38	APOL1 at 10 years: progress and next steps. Kidney International, 2021, 99, 1296-1302.	5.2	14
39	Quantify and control reproducibility in high-throughput experiments. Nature Methods, 2020, 17, 1207-1213.	19.0	11
40	Urinary Epidermal Growth Factor as a Marker of Disease Progression in Children With Nephrotic Syndrome. Kidney International Reports, 2020, 5, 414-425.	0.8	10
41	Evaluating Mendelian nephrotic syndrome genes for evidence for risk alleles or oligogenicity that explain heritability. Pediatric Nephrology, 2017, 32, 467-476.	1.7	9
42	Gene-level Integrated Metric of negative Selection (GIMS) Prioritizes Candidate Genes for Nephrotic Syndrome. PLoS ONE, 2013, 8, e81062.	2.5	9
43	Genetics of Nephrotic Syndrome Presenting in Childhood: Core Curriculum 2019. American Journal of Kidney Diseases, 2019, 74, 549-557.	1.9	8
44	APOL1 in an ethnically diverse pediatric population with nephrotic syndrome: implications in focal segmental glomerulosclerosis and other diagnoses. Pediatric Nephrology, 2021, 36, 2327-2336.	1.7	8
45	A glomerular transcriptomic landscape of apolipoprotein L1 in Black patients with focal segmental glomerulosclerosis. Kidney International, 2021, , .	5.2	8
46	GeneVetter: a web tool for quantitative monogenic assessment of rare diseases. Bioinformatics, 2015, 31, 3682-3684.	4.1	7
47	Using and producing publicly available genomic data to accelerate discovery in nephrology. Nature Reviews Nephrology, 2019, 15, 523-524.	9.6	4
48	The human nephrin Y1139RSL motif is essential for podocyte foot process organization and slit diaphragm formation during glomerular development. Journal of Biological Chemistry, 2019, 294, 10773-10788.	3.4	4
49	Brazilian Network of Pediatric Nephrotic Syndrome (REBRASNI). Kidney International Reports, 2020, 5, 358-362.	0.8	4
50	APOL1 genotype-associated morphologic changes among patients with focal segmental glomerulosclerosis. Pediatric Nephrology, 2021, 36, 2747-2757.	1.7	3
51	Genes, Exomes, Genomes, Copy Number: What is Their Future in Pediatric Renal Disease. Current Pediatrics Reports, 2013, 1, 52-59.	4.0	2
52	tarSVM: Improving the accuracy of variant calls derived from microfluidic PCR-based targeted next generation sequencing using a support vector machine. BMC Bioinformatics, 2016, 17, 233.	2.6	2
53	The Democratization of Genomic Inquiry Empowers Our Understanding of Nephrotic Syndrome. Transplantation, 2017, 101, 2814-2815.	1.0	2
54	Effect of parental origin of damaging variants in pro-angiogenic genes on fetal growth in patients with congenital heart defects: Data and analyses. Data in Brief, 2019, 25, 104311.	1.0	2

#	Article	IF	CITATIONS
55	Introduction to Genomics of Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 267-267.	4.5	2
56	Actualizing the Benefits of Genomic Discovery in Pediatric Nephrology. Journal of Pediatric Genetics, 2016, 05, 069-075.	0.7	1
57	A Familial Infantile Renal Failure. Kidney International Reports, 2017, 2, 130-133.	0.8	1
58	Unique association of multiple endocrine neoplasia 2A and congenital anomalies of the kidney and urinary tract in a child with a RET mutation. BMJ Case Reports, 2019, 12, e229904.	0.5	1
59	A Case of Hyperphosphatemia and Elevated Fibroblast Growth Factor 23: A Brief Review of Hyperphosphatemia and Fibroblast Growth Factor 23 Pathway. Kidney International Reports, 2017, 2, 1238-1242.	0.8	0
60	Glomerular and tubulointerstitial eQTLs for genomic discovery. Nature Reviews Nephrology, 2019, 15, 3-4.	9.6	0