List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2183914/publications.pdf Version: 2024-02-01

YAN TENC

#	Article	IF	CITATIONS
1	Theoretical and Experimental Studies on the Asymmetric Mode Competition in an Overmoded Ka-Band Cerenkov Oscillator. IEEE Transactions on Electron Devices, 2021, 68, 1289-1297.	3.0	3
2	Investigation of damage traces on the SWS of the RBWO with a low guiding magnetic field. Physics of Plasmas, 2021, 28, .	1.9	2
3	Pulse Lengthening of the Microwave Generated by TMâ,€â,, Mode <i>Ka</i> -Band RBWO Operating With Low Guiding Magnetic Field. IEEE Transactions on Electron Devices, 2021, 68, 3015-3020.	3.0	5
4	A compact coaxial cusped periodic permanent magnet for a coaxial relativistic ÄŒerenkov generator. Physics of Plasmas, 2020, 27, .	1.9	5
5	Theoretical research on the annular intensive relativistic electron motion focused by coaxial cusped periodic permanent magnetic field. Physics of Plasmas, 2020, 27, 053104.	1.9	3
6	Experimental Study on a Moderately Overmoded Ka-Band Cherenkov Oscillator Operating With Low Magnetic Field. IEEE Transactions on Electron Devices, 2020, 67, 2905-2911.	3.0	3
7	Emission Uniformity of an Annular Graphite Cathode With a Focusing Electrode in a High Power Vacuum Diode. IEEE Access, 2020, 8, 19026-19032.	4.2	4
8	Influence of SWS Size on Mode Purification in an Overmoded Ka-Band Cerenkov Oscillator. IEEE Access, 2020, 8, 32080-32087.	4.2	1
9	A novel high power vacuum diode with a focusing electrode for effective operation in a low guiding magnetic field. Review of Scientific Instruments, 2020, 91, 014706.	1.3	4
10	Investigation of an X band high efficiency klystron-like relativistic backward wave oscillator. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 164102.	0.5	4
11	A novel structure for extended interaction oscillators operating at 0.3 THz. Europhysics Letters, 2019, 127, 39001.	2.0	3
12	A GW-level Ku-band oversized coaxial relativistic Cerenkov generator with low guiding magnetic field. AIP Advances, 2019, 9, .	1.3	5
13	Theoretical research on power handling capacity of the modes TM01 and TM02 in corrugated waveguides. Physics of Plasmas, 2019, 26, .	1.9	8
14	Advance of Theoretical Research on Relativistic Backward Wave Oscillator Operating in Higher Modes. , 2019, , .		0
15	Theoretical Research on Properties of Spatial Harmonics in Corrugated Waveguide. IEEE Access, 2019, 7, 167784-167794.	4.2	4
16	Optimum design and measurement analysisof 0.34 THz extended interaction klystron. AIP Advances, 2018, 8, .	1.3	5
17	RF Breakdown of the Resonant Reflector in a Relativistic Backward Wave Oscillator. IEEE Transactions on Plasma Science, 2018, 46, 900-908.	1.3	26
18	A high-order mode extended interaction oscillator operating in the Y band. Physics of Plasmas, 2018, 25, .	1.9	11

#	Article	IF	CITATIONS
19	An advanced terahertz EIO operating with TM31 mode. , 2018, , .		1
20	Optimizing and experimental investigation of a Ka-band relativistic backward wave oscillator operating at TM <inf>02</inf> mode. , 2018, , .		0
21	Power capacity enhancement for klystron-like RBWOs with a TM021 extraction cavity. Physics of Plasmas, 2018, 25, .	1.9	6
22	Theoretical and experimental research on a high efficiency X-band klystron-like RBWO. AIP Advances, 2018, 8, .	1.3	9
23	Increasing the bandwidth of an extended interaction klystron at 0.34 THz by staggered tuning of the multi-gap cavities. Europhysics Letters, 2018, 123, 49001.	2.0	3
24	Plasma effects of the directional coupler for high-power microwave measurements. Physics of Plasmas, 2018, 25, 072122.	1.9	0
25	Influence of emission threshold and current increase rate on microwave starting time in relativistic backward wave oscillator. Physics of Plasmas, 2017, 24, .	1.9	3
26	Relativistic backward wave oscillator operating in TM02 with cutoff-type resonant reflector. Physics of Plasmas, 2017, 24, .	1.9	4
27	Influence of voltage rise time on phase locking by priming effect in weakly resonant relativistic backward wave oscillators. Physics of Plasmas, 2017, 24, 053101.	1.9	0
28	Effective suppression of pulse shortening in a relativistic backward wave oscillator. Physics of Plasmas, 2017, 24, .	1.9	22
29	Research on origination of oscillations and microwave growth in weakly resonant RBWOs. Physics of Plasmas, 2017, 24, 093115.	1.9	2
30	A high-order mode extended interaction klystron at 0.34 THz. Physics of Plasmas, 2017, 24, .	1.9	27
31	Study on the stability and reliability of Clinotron at Y-band. Physics of Plasmas, 2017, 24, 113108.	1.9	1
32	Optical diagnosis of spatiotemporal development of plasma discharge in high power microwave sources. Applied Physics Letters, 2017, 111, 163505.	3.3	1
33	Influence of cathode emission uniformity on microwave generation in relativistic backward wave oscillator. Journal of Applied Physics, 2017, 122, .	2.5	16
34	Origination of oscillation startup in RBWO from radiation of electrons. , 2017, , .		0
35	Mode analysis of an overmoded extended interaction cavity in terahertz EIK. , 2017, , .		4
36	A high efficient X-band klystron-like RBWO. , 2017, , .		1

A high efficient X-band klystron-like RBWO. , 2017, , . 36

#	Article	IF	CITATIONS
37	Two-surface multipactor in a coaxial transmission line. , 2017, , .		Ο
38	A powerful coaxial relativistic backward wave oscillator. , 2016, , .		1
39	Optimization of the multi-slot cavity and drift in a 0.34 THz extended interaction klystron. Physics of Plasmas, 2016, 23, .	1.9	4
40	Development of a new pneumatic-driven earthworm-like soft robot. , 2016, , .		13
41	Preliminary research on overmoded high-power millimeter-wave Cerenkov generator with dual-cavity reflector in low guiding magnetic field. Physics of Plasmas, 2015, 22, .	1.9	15
42	Influence of voltage rise time on microwave generation in relativistic backward wave oscillator. Physics of Plasmas, 2015, 22, .	1.9	4
43	Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator. Journal of Applied Physics, 2015, 118, 173103.	2.5	2
44	Influence of wall plasma on microwave frequency and power in relativistic backward wave oscillator. Physics of Plasmas, 2015, 22, .	1.9	14
45	Unexpected electric breakdown effects in a foilless diode. , 2015, , .		0
46	Design and characteristic study of a pneumatically actuated earthworm-like soft robot. , 2015, , .		10
47	Characteristics of plasma process in explosive electron emission. , 2015, , .		1
48	A millimeter wave relativistic backward wave oscillator operating in TM03 mode with low guiding magnetic field. Physics of Plasmas, 2015, 22, .	1.9	36
49	Tunability over three frequency bands induced by mode transition in relativistic backward wave oscillator with strong end reflections. Physics of Plasmas, 2014, 21, 103110.	1.9	15
50	Analysis of electron dynamics and two mechanisms in a coaxial magnetic wiggler. Physics of Plasmas, 2014, 21, 123119.	1.9	5
51	A Ka-band TM02 mode relativistic backward wave oscillator with cascaded resonators. Physics of Plasmas, 2014, 21, .	1.9	48
52	A powerful reflector in relativistic backward wave oscillator. Physics of Plasmas, 2014, 21, .	1.9	22
53	An overmoded relativistic backward wave oscillator with efficient dual-mode operation. Applied Physics Letters, 2014, 104, 093505.	3.3	46
54	Influences of the Modulation Cavity and Extraction Cavity on Microwave Generation and Starting Oscillation in a Klystron-Like Relativistic Backward Wave Oscillator. IEEE Transactions on Electron Devices, 2014, 61, 611-616.	3.0	21

#	Article	IF	CITATIONS
55	Research on Voltage and Current Transient Process of Foilless Diode for RBWO. IEEE Transactions on Plasma Science, 2013, 41, 2763-2768.	1.3	5
56	Design and efficient operation of a coaxial RBWO. Laser and Particle Beams, 2013, 31, 321-331.	1.0	15
57	Generation of beating wave by multi-coaxial relativistic backward wave oscillator. Laser and Particle Beams, 2013, 31, 703-714.	1.0	3
58	Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes. AIP Advances, 2013, 3, .	1.3	6
59	Improving the microwave window breakdown threshold by using a fluorinated, periodically patterned surface. Journal of Applied Physics, 2013, 114, 163304.	2.5	18
60	Rapid startup in relativistic backward wave oscillator by injecting external backward signal. Physics of Plasmas, 2012, 19, .	1.9	20
61	Phase locking of high power relativistic backward wave oscillator using priming effect. Journal of Applied Physics, 2012, 111, .	2.5	31
62	Numerical and Experimental Studies on Frequency Characteristics of \$hbox{TE}_{11}\$-Mode Enhanced Coaxial Vircator. IEEE Transactions on Plasma Science, 2011, 39, 1762-1767.	1.3	8
63	High-efficiency coaxial relativistic backward wave oscillator. Review of Scientific Instruments, 2011, 82, 024701.	1.3	15
64	High efficiency coaxial klystron-like relativistic backward wave oscillator with a premodulation cavity. Physics of Plasmas, 2011, 18, 113102.	1.9	14
65	Starting current of coaxial relative backward wave oscillator. Physics of Plasmas, 2010, 17, .	1.9	16
66	A New Reflector Designed for Efficiency Enhancement of CRBWO. IEEE Transactions on Plasma Science, 2009, 37, 1062-1068.	1.3	18
67	Growth rate of the Coaxial Slow Wave Structure. , 2009, , .		1
68	Limitation of cross-excitation instability in a relativistic Cerenkov generator with coaxial slow wave structure. Physics of Plasmas, 2008, 15, 053107.	1.9	14