
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2182704/publications.pdf Version: 2024-02-01

DETED S T YHEN

#	Article	IF	CITATIONS
1	Experimental models of acute kidney injury for translational research. Nature Reviews Nephrology, 2022, 18, 277-293.	9.6	32
2	Methodological considerations for measuring biofluid-based microRNA biomarkers. Critical Reviews in Toxicology, 2021, 51, 264-282.	3.9	13
3	Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight, 2021, 6, .	5.0	86
4	Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2021, 10, e12093.	12.2	182
5	Class B Scavenger Receptors BI and BII Protect against LPS-Induced Acute Lung Injury in Mice by Mediating LPS. Infection and Immunity, 2021, 89, e0030121.	2.2	4
6	Improved Mitochondrial Metabolism and Reduced Inflammation Following Attenuation of Murine Lupus With Coenzyme Q10 Analog Idebenone. Arthritis and Rheumatology, 2020, 72, 454-464.	5.6	52
7	miR-150-Based RNA Interference Attenuates Tubulointerstitial Fibrosis through the SOCS1/JAK/STAT Pathway InÂVivo and InÂVitro. Molecular Therapy - Nucleic Acids, 2020, 22, 871-884.	5.1	33
8	A Furosemide Excretion Stress Test Predicts Mortality in Mice After Sepsis and Outperforms the Furosemide Stress Test During Vasopressin Administration. , 2020, 2, e0112.		0
9	Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL- <i>lpr</i> mice. Lupus Science and Medicine, 2020, 7, e000387.	2.7	54
10	Circadian variation in the release of small extracellular vesicles can be normalized by vesicle number or TSG101. American Journal of Physiology - Renal Physiology, 2019, 317, F1098-F1110.	2.7	31
11	Gut Leakage of Fungal-Derived Inflammatory Mediators: Part of a Gut-Liver-Kidney Axis in Bacterial Sepsis. Digestive Diseases and Sciences, 2019, 64, 2416-2428.	2.3	72
12	The role of adenosine 1a receptor signaling on GFR early after the induction of sepsis. American Journal of Physiology - Renal Physiology, 2018, 314, F788-F797.	2.7	9
13	Quantification of Exosomes. Journal of Cellular Physiology, 2017, 232, 1587-1590.	4.1	131
14	Urine Exosomes. Advances in Clinical Chemistry, 2017, 78, 103-122.	3.7	121
15	Urine Exosome Isolation and Characterization. Methods in Molecular Biology, 2017, 1641, 413-423.	0.9	62
16	Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo. PLoS ONE, 2017, 12, e0175824.	2.5	15
17	Mitochondrial DNA–enriched microparticles promote acute-on-chronic alcoholic neutrophilia and hepatotoxicity. JCI Insight, 2017, 2, .	5.0	76
18	CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. Journal of Clinical Investigation, 2017, 127, 1271-1283.	8.2	100

#	Article	IF	CITATIONS
19	Lipopolysaccharide-Induced CD300b Receptor Binding to Toll-like Receptor 4 Alters Signaling to Drive Cytokine Responses that Enhance Septic Shock. Immunity, 2016, 44, 1365-1378.	14.3	54
20	Antagonism of scavenger receptor CD36 by 5AÂpeptide prevents chronic kidney disease progression in mice independent of blood pressureÂregulation. Kidney International, 2016, 89, 809-822.	5.2	55
21	Human SR-BI and SR-BII Potentiate Lipopolysaccharide-Induced Inflammation and Acute Liver and Kidney Injury in Mice. Journal of Immunology, 2016, 196, 3135-3147.	0.8	50
22	The Authors Reply. Kidney International, 2015, 88, 915-916.	5.2	0
23	TLR4 mutant mice are protected from renal fibrosis and chronic kidney disease progression. Physiological Reports, 2015, 3, e12558.	1.7	78
24	Pulsed Focused Ultrasound Pretreatment Improves Mesenchymal Stromal Cell Efficacy in Preventing and Rescuing Established Acute Kidney Injury in Mice. Stem Cells, 2015, 33, 1241-1253.	3.2	42
25	Microparticles: markers and mediators of sepsis-induced microvascular dysfunction, immunosuppression, and AKI. Kidney International, 2015, 87, 1100-1108.	5.2	81
26	Automated quantification of renal fibrosis with Sirius Red and polarization contrast microscopy. Physiological Reports, 2014, 2, e12088.	1.7	81
27	Comparison of serum creatinine and serum cystatin C as biomarkers to detect sepsis-induced acute kidney injury and to predict mortality in CD-1 mice. American Journal of Physiology - Renal Physiology, 2014, 307, F939-F948.	2.7	45
28	Bioactive Exosomes: Possibilities for Diagnosis and Management of Bladder Cancer. Journal of Urology, 2014, 192, 297-298.	0.4	13
29	Microparticles during sepsis: target, canary or cure?. Intensive Care Medicine, 2013, 39, 1854-1856.	8.2	10
30	The HESI inter-laboratory miRNA project. Toxicology Letters, 2013, 221, S48.	0.8	0
31	Urinary exosomal Wilms' tumor-1 as a potential biomarker for podocyte injury. American Journal of Physiology - Renal Physiology, 2013, 305, F553-F559.	2.7	96
32	Calpastatin Controls Polymicrobial Sepsis by Limiting Procoagulant Microparticle Release. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 744-755.	5.6	56
33	Class B Scavenger Receptor Types I and II and CD36 Targeting Improves Sepsis Survival and Acute Outcomes in Mice. Journal of Immunology, 2012, 188, 2749-2758.	0.8	56
34	Response to Comment on "Class B Scavenger Receptor Types I and II and CD36 Targeting Improves Sepsis Survival and Acute Outcomes in Miceâ€. Journal of Immunology, 2012, 189, 502-502.	0.8	0
35	How can antibiotics worsen acute kidney injury but improve survival in experimental sepsis?*. Critical Care Medicine, 2012, 40, 685-686.	0.9	4
36	Class B Scavenger Receptor Types I and II and CD36 Mediate Bacterial Recognition and Proinflammatory Signaling Induced by <i>Escherichia coli</i> , Lipopolysaccharide, and Cytosolic Chaperonin 60. Journal of Immunology, 2012, 188, 1371-1380.	0.8	75

#	Article	IF	CITATIONS
37	Chronic kidney disease worsens sepsis and sepsis-induced acute kidney injury by releasing High Mobility Group Box Protein-1. Kidney International, 2011, 80, 1198-1211.	5.2	130
38	Exosomes from human saliva as a source of microRNA biomarkers. Oral Diseases, 2010, 16, 34-38.	3.0	650
39	Major contribution of tubular secretion to creatinine clearance in mice. Kidney International, 2010, 77, 519-526.	5.2	149
40	Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model. Kidney International, 2010, 78, 1136-1153.	5.2	139
41	Isolation and Purification of Exosomes in Urine. Methods in Molecular Biology, 2010, 641, 89-99.	0.9	97
42	Animal models of sepsis and sepsis-induced kidney injury. Journal of Clinical Investigation, 2009, 119, 2868-2878.	8.2	450
43	Reduced Production of Creatinine Limits Its Use as Marker of Kidney Injury in Sepsis. Journal of the American Society of Nephrology: JASN, 2009, 20, 1217-1221.	6.1	342
44	Bone marrow stromal cells attenuate sepsis via prostaglandin E2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 2009, 15, 42-49.	30.7	2,165
45	Reply to 'Mesenchymal stem cells: another anti-inflammatory treatment for sepsis?'. Nature Medicine, 2009, 15, 602-602.	30.7	1
46	Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney International, 2008, 74, 613-621.	5.2	238
47	Pre-existing renal disease promotes sepsis-induced acute kidney injury and worsens outcome. Kidney International, 2008, 74, 1017-1025.	5.2	99
48	Methyl-2-acetamidoacrylate, an ethyl pyruvate analog, decreases sepsis-induced acute kidney injury in mice. American Journal of Physiology - Renal Physiology, 2008, 295, F1825-F1835.	2.7	72
49	AP214, an analogue of α-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney International, 2008, 73, 1266-1274.	5.2	100
50	Setting the stage for acute-on-chronic kidney injury. Kidney International, 2008, 74, 7-9.	5.2	8
51	Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. American Journal of Physiology - Renal Physiology, 2008, 294, F1050-F1058.	2.7	165
52	Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. American Journal of Physiology - Renal Physiology, 2007, 292, F1657-F1661.	2.7	367
53	Liver proteomics for therapeutic drug discovery: Inhibition of the cyclophilin receptor CD147 attenuates sepsis-induced acute renal failure*. Critical Care Medicine, 2007, 35, 2319-2328.	0.9	64
54	Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiological Genomics, 2006, 25, 375-386.	2.3	73

#	Article	IF	CITATIONS
55	Sepsis-induced organ failure is mediated by different pathways in the kidney and liver: Acute renal failure is dependent on MyD88 but not renal cell apoptosis. Kidney International, 2006, 69, 832-836.	5.2	100
56	Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney International, 2006, 69, 1471-1476.	5.2	503
57	Simvastatin improves sepsis-induced mortality and acute kidney injury via renal vascular effects. Kidney International, 2006, 69, 1535-1542.	5.2	184
58	Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure. Kidney International, 2006, 70, 496-506.	5.2	107
59	Exosomal Fetuin-A identified by proteomics: A novel urinary biomarker for detecting acute kidney injury. Kidney International, 2006, 70, 1847-1857.	5.2	373
60	Connective Tissue Growth Factor is a Biomarker and Mediator of Kidney Allograft Fibrosis. American Journal of Transplantation, 2006, 6, 2292-2306.	4.7	93
61	Acute Kidney Injury Biomarkers - Needs, Present Status, and Future Promise. Nephrology Self-assessment Program: NephSAP, 2006, 5, 63-71.	3.0	31
62	Dendrimer-enhanced MRI as a diagnostic and prognostic biomarker of sepsis-induced acute renal failure in aged mice. Kidney International, 2005, 67, 2159-2167.	5.2	55
63	Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. Journal of Clinical Investigation, 2005, 115, 3409-3417.	8.2	275
64	α-Melanocyte–stimulating Hormone Inhibits Lung Injury after Renal Ischemia/Reperfusion. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 749-756.	5.6	137
65	Delayed DMSO Administration Protects the Kidney from Mercuric Chloride-Induced Injury. Journal of the American Society of Nephrology: JASN, 2004, 15, 2648-2654.	6.1	22
66	A simplified method for HPLC determination of creatinine in mouse serum. American Journal of Physiology - Renal Physiology, 2004, 286, F1116-F1119.	2.7	122
67	Ethyl pyruvate decreases sepsis-induced acute renal failure and multiple organ damage in aged mice. Kidney International, 2003, 64, 1620-1631.	5.2	236
68	Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2415-2419.	7.1	192
69	Early detection of cysteine rich protein 61 (CYR61, CCN1) in urine following renal ischemic reperfusion injury. Kidney International, 2002, 62, 1601-1610.	5.2	132
70	RNA: a method to specifically inhibit PCR amplification of known members of a multigene family by degenerate primers. Nucleic Acids Research, 2001, 29, 31e-31.	14.5	4
71	Dominant Negative Mutants of Guanylyl Cyclase: Probes for Global Functions and Intramolecular Mechanisms. Methods, 1999, 19, 532-544.	3.8	3
72	15 Interruption of specific guanylyl cyclase signaling pathways. Advances in Second Messenger and Phosphoprotein Research, 1997, 31, 183-190.	4.5	5

#	Article	IF	CITATIONS
73	Differential expression of mRNA for guanylyl cyclase-linked endothelium-derived relaxing factor receptor subunits in rat kidney Journal of Clinical Investigation, 1993, 91, 730-734.	8.2	44
74	Guanylyl Cyclase-Linked Receptors. Annual Review of Neuroscience, 1992, 15, 193-225.	10.7	111
75	The expanding family of guanylyl cyclases. Trends in Pharmacological Sciences, 1991, 12, 116-120.	8.7	90
76	A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry, 1990, 29, 10872-10878.	2.5	176
77	Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell, 1990, 63, 941-948.	28.9	601
78	Non-identity of cGMP as the guanine nucleotide stimulated to bind to ROS by light and ATP. Experimental Eye Research, 1989, 49, 75-85.	2.6	1