Rebeca Acin-Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2180986/publications.pdf

Version: 2024-02-01

72 papers 9,097 citations

76326 40 h-index 71 g-index

78 all docs 78 docs citations

78 times ranked 14393 citing authors

#	Article	IF	CITATIONS
1	Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task?. Nucleic Acids Research, 2011, 39, 225-234.	14.5	1,296
2	Respiratory Active Mitochondrial Supercomplexes. Molecular Cell, 2008, 32, 529-539.	9.7	703
3	Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain. Science, 2013, 340, 1567-1570.	12.6	687
4	Cyclic AMP Produced inside Mitochondria Regulates Oxidative Phosphorylation. Cell Metabolism, 2009, 9, 265-276.	16.2	422
5	Respiratory Complex III Is Required to Maintain Complex I in Mammalian Mitochondria. Molecular Cell, 2004, 13, 805-815.	9.7	402
6	Mitochondria Bound to Lipid Droplets Have Unique Bioenergetics, Composition, and Dynamics that Support Lipid Droplet Expansion. Cell Metabolism, 2018, 27, 869-885.e6.	16.2	359
7	Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature, 2016, 535, 561-565.	27.8	333
8	Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nature Genetics, 2006, 38, 1261-1268.	21.4	301
9	Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nature Immunology, 2016, 17, 1037-1045.	14.5	259
10	The function of the respiratory supercomplexes: The plasticity model. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 444-450.	1.0	252
11	Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nature Communications, 2018, 9, 2658.	12.8	242
12	Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses. Cell Metabolism, 2015, 22, 485-498.	16.2	239
13	The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency. Cell Reports, 2016, 15, 197-209.	6.4	215
14	Defective Extracellular Pyrophosphate Metabolism Promotes Vascular Calcification in a Mouse Model of Hutchinson-Gilford Progeria Syndrome That Is Ameliorated on Pyrophosphate Treatment. Circulation, 2013, 127, 2442-2451.	1.6	188
15	ATP-Dependent Lon Protease Controls Tumor Bioenergetics by Reprogramming Mitochondrial Activity. Cell Reports, 2014, 8, 542-556.	6.4	186
16	Protein Phosphorylation and Prevention of Cytochrome Oxidase Inhibition by ATP: Coupled Mechanisms of Energy Metabolism Regulation. Cell Metabolism, 2011, 13, 712-719.	16.2	173
17	Increased localization of <scp>APP</scp> 99 in mitochondriaâ€associated <scp>ER</scp> membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO Journal, 2017, 36, 3356-3371.	7.8	164
18	Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12920-12924.	7.1	163

#	Article	IF	CITATIONS
19	Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature, 2020, 586, 287-291.	27.8	139
20	A Phosphodiesterase 2A Isoform Localized to Mitochondria Regulates Respiration. Journal of Biological Chemistry, 2011, 286, 30423-30432.	3.4	115
21	Identification of mitochondrial dysfunction in Hutchinson–Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. Journal of Proteomics, 2013, 91, 466-477.	2.4	110
22	A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO Journal, 2020, 39, e104073.	7.8	110
23	Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain, 2010, 133, 797-807.	7.6	108
24	Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Research, 2003, 31, 5349-5355.	14.5	101
25	ROS-Triggered Phosphorylation of Complex II by Fgr Kinase Regulates Cellular Adaptation to Fuel Use. Cell Metabolism, 2014, 19, 1020-1033.	16.2	101
26	Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Molecular Medicine, 2009, 1, 392-406.	6.9	97
27	Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Human Molecular Genetics, 2013, 22, 1233-1248.	2.9	87
28	ISG15 governs mitochondrial function in macrophages following vaccinia virus infection. PLoS Pathogens, 2017, 13, e1006651.	4.7	75
29	Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. FASEB Journal, 2010, 24, 627-636.	0.5	74
30	An intragenic suppressor in the cytochrome c oxidase I gene of mouse mitochondrial DNA. Human Molecular Genetics, 2003, 12, 329-339.	2.9	71
31	Five Entry Points of the Mitochondrially Encoded Subunits in Mammalian Complex I Assembly. Molecular and Cellular Biology, 2010, 30, 3038-3047.	2.3	68
32	The Chromatin Remodeling Complex Chd4/NuRD Controls Striated Muscle Identity and Metabolic Homeostasis. Cell Metabolism, 2016, 23, 881-892.	16.2	68
33	Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Q _{pool} . Science Advances, 2020, 6, eaba7509.	10.3	68
34	Analysis of mouse models of cytochrome c oxidase deficiency owing to mutations in Sco2. Human Molecular Genetics, 2010, 19, 170-180.	2.9	66
35	Ablation of the stress protease OMA1 protects against heart failure in mice. Science Translational Medicine, 2018, 10, .	12.4	66
36	MKK6 controls T3-mediated browning of white adipose tissue. Nature Communications, 2017, 8, 856.	12.8	54

#	Article	IF	CITATIONS
37	Evolution Meets Disease: Penetrance and Functional Epistasis of Mitochondrial tRNA Mutations. PLoS Genetics, 2011, 7, e1001379.	3.5	51
38	Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Reports, 2021, 36, 109636.	6.4	48
39	Activation of Serine One-Carbon Metabolism by Calcineurin AÎ 21 Reduces Myocardial Hypertrophy and Improves Ventricular Function. Journal of the American College of Cardiology, 2018, 71, 654-667.	2.8	45
40	Regulation of intermediary metabolism by the PKCδ signalosome in mitochondria. FASEB Journal, 2010, 24, 5033-5042.	0.5	44
41	Mitochondrial DNA mutations affect calcium handling in differentiated neurons. Brain, 2010, 133, 787-796.	7.6	43
42	How Mitochondrial Metabolism Contributes to Macrophage Phenotype and Functions. Journal of Molecular Biology, 2018, 430, 3906-3921.	4.2	41
43	Sex-specific metabolic functions of adipose Lipocalin-2. Molecular Metabolism, 2019, 30, 30-47.	6.5	41
44	Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nature Metabolism, 2020, 2, 974-988.	11.9	40
45	Are Zinc-Finger Domains of Protein Kinase C Dynamic Structures That Unfold by Lipid or Redox Activation?. Antioxidants and Redox Signaling, 2011, 14, 757-766.	5.4	39
46	Laminar shear stress regulates mitochondrial dynamics, bioenergetics responses and PRX3 activation in endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2403-2413.	4.1	34
47	PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. Scientific Reports, 2019, 9, 15022.	3.3	34
48	ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 121-131.	5.7	33
49	Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2. Nature Metabolism, 2021, 3, 1552-1568.	11.9	32
50	Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics. Science Advances, 2020, 6, eaba5345.	10.3	31
51	NCLX prevents cell death during adrenergic activation of the brown adipose tissue. Nature Communications, 2020, 11, 3347.	12.8	31
52	Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO Reports, 2020, 21, e49634.	4.5	31
53	p38αÂblocks brown adipose tissue thermogenesis through p38δÂinhibition. PLoS Biology, 2018, 16, e2004455.	5.6	30
54	A new non-canonical pathway of $\widehat{Gl}\pm q$ protein regulating mitochondrial dynamics and bioenergetics. Cellular Signalling, 2014, 26, 1135-1146.	3.6	28

#	Article	lF	CITATIONS
55	Measuring Mitochondrial Respiration in Previously Frozen Biological Samples. Current Protocols in Cell Biology, 2020, 89, e116.	2.3	26
56	Two protein kinase C isoforms, \hat{l}' and $\hat{l}\mu$, regulate energy homeostasis in mitochondria by transmitting opposing signals to the pyruvate dehydrogenase complex. FASEB Journal, 2012, 26, 3537-3549.	0.5	24
57	Ellagic Acid and Its Microbial Metabolite Urolithin A Alleviate Dietâ€Induced Insulin Resistance in Mice. Molecular Nutrition and Food Research, 2020, 64, e2000091.	3.3	23
58	An EMMPRIN/ \hat{I}^3 -catenin/Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions. Journal of Cell Science, 2014, 127, 3768-81.	2.0	22
59	Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspaseâ€dependent NADPH oxidase activation. Immunology and Cell Biology, 2010, 88, 545-554.	2.3	21
60	Recruitment and remodeling of peridroplet mitochondria in human adipose tissue. Redox Biology, 2021, 46, 102087.	9.0	17
61	Increased Learning and Brain Long-Term Potentiation in Aged Mice Lacking DNA Polymerase μ. PLoS ONE, 2013, 8, e53243.	2.5	17
62	Hiding in plain sight: Uncovering a new function of vitamin A in redox signaling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 241-247.	2.4	16
63	Regulation of intermediary metabolism by the PKCδ signalosome in mitochondria. FASEB Journal, 2010, 24, 5033-5042.	0.5	14
64	Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life, 2021, 11, 949.	2.4	13
65	A Thermogenic-Like Brown Adipose Tissue Phenotype Is Dispensable for Enhanced Glucose Tolerance in Female Mice. Diabetes, 2019, 68, 1717-1729.	0.6	12
66	Isolation and functional analysis of peridroplet mitochondria from murine brown adipose tissue. STAR Protocols, 2021, 2, 100243.	1.2	11
67	Heteroplasmy of Wild-Type Mitochondrial DNA Variants in Mice Causes Metabolic Heart Disease With Pulmonary Hypertension and Frailty. Circulation, 2022, 145, 1084-1101.	1.6	10
68	Analyzing electron transport chain supercomplexes. Methods in Cell Biology, 2020, 155, 181-197.	1.1	8
69	$p38\hat{l}^3$ and $p38\hat{l}^2$ regulate postnatal cardiac metabolism through glycogen synthase 1. PLoS Biology, 2021, 19, e3001447.	5.6	8
70	Mitochondrial Health in Aging and Age-Related Metabolic Disease. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-2.	4.0	6
71	Reply to "Reactive oxygen species and the segregation of mtDNA sequence variants― Nature Genetics, 2007, 39, 572-572.	21.4	0
72	ATPases and Mitochondrial Supercomplexes. , 2015, , 61-80.		0