Juan C Troncoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2180911/publications.pdf Version: 2024-02-01

		36303	24258
126	14,401	51	110
papers	citations	h-index	g-index
137	137	137	21769
157	157	137	21/09
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
2	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
3	C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 2014, 507, 195-200.	27.8	779
4	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	27.8	772
5	Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 2020, 26, 769-780.	30.7	547
6	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
7	Loss of the Presynaptic Vesicle Protein Synaptophysin in Hippocampus Correlates with Cognitive Decline in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 1997, 56, 933-944.	1.7	487
8	TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science, 2015, 349, 650-655.	12.6	419
9	A Multi-network Approach Identifies Protein-Specific Co-expression in Asymptomatic and Symptomatic Alzheimer's Disease. Cell Systems, 2017, 4, 60-72.e4.	6.2	381
10	Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathologica, 2016, 131, 87-102.	7.7	380
11	Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Medicine, 2018, 15, e1002482.	8.4	336
12	Evidence for brain glucose dysregulation in Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 318-329.	0.8	320
13	Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson's disease. Science, 2018, 362, .	12.6	317
14	Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron, 2018, 99, 925-940.e7.	8.1	302
15	Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron, 2017, 94, 93-107.e6.	8.1	274
16	Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer's disease. Nature, 1995, 378, 284-287.	27.8	222
17	Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy. Annals of Neurology, 1991, 29, 529-541.	5.3	217
18	Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Annals of Neurology, 2008, 64, 168-176.	5.3	203

#	Article	IF	CITATIONS
19	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	10.2	195
20	Deep proteomic network analysis of Alzheimer's disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Molecular Neurodegeneration, 2018, 13, 52.	10.8	178
21	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	9.0	166
22	A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion. Annals of Neurology, 2001, 50, 373-380.	5.3	155
23	NPTX2 and cognitive dysfunction in Alzheimer's Disease. ELife, 2017, 6, .	6.0	146
24	Overexpression of four-repeat tau mRNA isoforms in progressive supranuclear palsy but not in Alzheimer's disease. Annals of Neurology, 1999, 46, 325-332.	5.3	140
25	PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1686-1691.	7.1	140
26	A culture–brain link: Negative age stereotypes predict Alzheimer's disease biomarkers Psychology and Aging, 2016, 31, 82-88.	1.6	138
27	Discovery of several thousand highly diverse circular DNA viruses. ELife, 2020, 9, .	6.0	131
28	Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Human Molecular Genetics, 2014, 23, 4621-4638.	2.9	126
29	Neuropathologic Studies of the Baltimore Longitudinal Study of Aging (BLSA). Journal of Alzheimer's Disease, 2009, 18, 665-675.	2.6	122
30	Reduction of Nuak1 Decreases Tau and Reverses Phenotypes in a Tauopathy Mouse Model. Neuron, 2016, 92, 407-418.	8.1	120
31	Neurofibrillary axonal pathology in aluminum intoxication. Annals of Neurology, 1982, 12, 278-283.	5.3	106
32	A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion. Annals of Neurology, 2001, 50, 373-380.	5.3	104
33	Transcriptome sequencing reveals aberrant alternative splicing in Huntington's disease. Human Molecular Genetics, 2016, 25, 3454-3466.	2.9	102
34	TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. ELife, 2016, 5,	6.0	97
35	Rhoâ€associated protein kinase 1 (<scp>ROCK</scp> 1) is increased in Alzheimer's disease and <scp>ROCK</scp> 1 depletion reduces amyloidâ€i² levels in brain. Journal of Neurochemistry, 2016, 138, 525-531.	3.9	97
36	HuD Regulates Coding and Noncoding RNA to Induce APP→Aβ Processing. Cell Reports, 2014, 7, 1401-1409.	6.4	90

#	Article	IF	CITATIONS
37	Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study. PLoS Medicine, 2020, 17, e1003012.	8.4	90
38	Adult Conditional Knockout of PGC-1α Leads to Loss of Dopamine Neurons. ENeuro, 2016, 3, ENEURO.0183-16.2016.	1.9	87
39	Phosphorylation Modulates Calpain-Mediated Proteolysis and Calmodulin Binding of the 200-kDa and 160-kDa Neurofilament Proteins. Journal of Neurochemistry, 1993, 61, 191-199.	3.9	86
40	Shared proteomic effects of cerebral atherosclerosis and Alzheimer's disease on the human brain. Nature Neuroscience, 2020, 23, 696-700.	14.8	86
41	Neuropathology of preclinical and clinical lateonset Alzheimer's disease. Annals of Neurology, 1998, 43, 673-676.	5.3	83
42	Cannabinoid CB2 Receptors in a Mouse Model of AÎ ² Amyloidosis: Immunohistochemical Analysis and Suitability as a PET Biomarker of Neuroinflammation. PLoS ONE, 2015, 10, e0129618.	2.5	83
43	Neuropathologic, genetic, and longitudinal cognitive profiles in primary ageâ€related tauopathy (PART) and Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 8-16.	0.8	83
44	Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 78.	5.2	82
45	Bilateral opercular polymicrogyria. Annals of Neurology, 1989, 25, 90-92.	5.3	81
46	The problem of axonal injury in the brains of veterans with histories of blast exposure. Acta Neuropathologica Communications, 2014, 2, 153.	5.2	77
47	Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Genome Research, 2018, 28, 25-36.	5.5	75
48	Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI. NeuroImage, 2015, 105, 198-207.	4.2	73
49	Influence of species and processing parameters on recovery and content of brain tissueâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2020, 9, 1785746.	12.2	72
50	Changes in the detergent-insoluble brain proteome linked to amyloid and tau in Alzheimer's Disease progression. Proteomics, 2016, 16, 3042-3053.	2.2	69
51	STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118819119.	7.1	64
52	Abnormal brain cholesterol homeostasis in Alzheimer's disease—a targeted metabolomic and transcriptomic study. Npj Aging and Mechanisms of Disease, 2021, 7, 11.	4.5	59
53	Cryptic exon incorporation occurs in Alzheimer's brain lacking TDP-43 inclusion but exhibiting nuclear clearance of TDP-43. Acta Neuropathologica, 2017, 133, 923-931.	7.7	58
54	Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nature Communications, 2016, 7, 11792.	12.8	56

#	Article	IF	CITATIONS
55	Neurofilamentous Abnormalities in Motor Neurons in Spontaneously Occurring Animal Disorders. Journal of Neuropathology and Experimental Neurology, 1988, 47, 420-431.	1.7	55
56	Mild Cognitive Impairment and Asymptomatic Alzheimer Disease Subjects. Journal of Neuropathology and Experimental Neurology, 2014, 73, 295-304.	1.7	55
57	Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies. Neurobiology of Disease, 2016, 94, 55-62.	4.4	55
58	Papillomavirus-Like Particles Are an Effective Platform for Amyloid-β Immunization in Rabbits and Transgenic Mice. Journal of Immunology, 2006, 177, 2662-2670.	0.8	52
59	<scp>SCA</scp> 8 <scp>RAN</scp> polySer protein preferentially accumulates in white matter regions and is regulated by <scp>elF</scp> 3F. EMBO Journal, 2018, 37, .	7.8	50
60	C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathologica, 2019, 138, 795-811.	7.7	50
61	<i>^î²</i> -Amyloid Peptide Vaccination Results in Marked Changes in Serum and Brain A <i>β</i> Levels in APPswe/PS1ΔE9 Mice, as Detected by SELDI-TOF-Based ProteinChip [®] Technology. DNA and Cell Biology, 2001, 20, 713-721.	1.9	46
62	Mouse Model for Protein Tyrosine Phosphatase D (PTPRD) Associations with Restless Leg Syndrome or Willis-Ekbom Disease and Addiction: Reduced Expression Alters Locomotion, Sleep Behaviors and Cocaine-Conditioned Place Preference. Molecular Medicine, 2015, 21, 717-725.	4.4	45
63	MicroRNA-101 Modulates Autophagy and Oligodendroglial Alpha-Synuclein Accumulation in Multiple System Atrophy. Frontiers in Molecular Neuroscience, 2017, 10, 329.	2.9	43
64	Aggregation Properties of the Small Nuclear Ribonucleoprotein U1-70K in Alzheimer Disease. Journal of Biological Chemistry, 2014, 289, 35296-35313.	3.4	42
65	The spectrum of preclinical Alzheimer's disease pathology and its modulation by ApoE genotype. Neurobiology of Aging, 2018, 71, 72-80.	3.1	42
66	Bile acid synthesis, modulation, and dementia: A metabolomic, transcriptomic, and pharmacoepidemiologic study. PLoS Medicine, 2021, 18, e1003615.	8.4	38
67	α-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment. Molecular Neurodegeneration, 2020, 15, 27.	10.8	35
68	Early Selective Vulnerability of the CA2 Hippocampal Subfield in Primary Age-Related Tauopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 102-111.	1.7	35
69	Ventricular and Periventricular Anomalies in the Aging and Cognitively Impaired Brain. Frontiers in Aging Neuroscience, 2017, 9, 445.	3.4	33
70	Neuropathology and <scp>C</scp> ellular <scp>P</scp> athogenesis of <scp>S</scp> pinocerebellar <scp>A</scp> taxia <scp>T</scp> ype 12. Movement Disorders, 2015, 30, 1813-1824.	3.9	32
71	Quantitative Proteomic Analysis Reveals Similarities between Huntington's Disease (HD) and Huntington's Disease-Like 2 (HDL2) Human Brains. Journal of Proteome Research, 2016, 15, 3266-3283.	3.7	32
72	Quantitative proteomic analysis of the frontal cortex in Alzheimer's disease. Journal of Neurochemistry, 2021, 156, 988-1002.	3.9	32

#	Article	IF	CITATIONS
73	Diffeomorphic Registration With Intensity Transformation and Missing Data: Application to 3D Digital Pathology of Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 52.	2.8	31
74	Decreasing Incidence of Sudden Death Due to Undiagnosed Primary Central Nervous System Tumors. Archives of Pathology and Laboratory Medicine, 2001, 125, 1024-1030.	2.5	31
75	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	4.4	29
76	Clinicopathological correlates of depression in early Alzheimer's disease in the NACC. International Journal of Geriatric Psychiatry, 2016, 31, 1301-1311.	2.7	27
77	Neurexin 3 transmembrane and soluble isoform expression and splicing haplotype are associated with neuron inflammasome and Alzheimer's disease. Alzheimer's Research and Therapy, 2019, 11, 28.	6.2	27
78	TRIP12 ubiquitination of glucocerebrosidase contributes to neurodegeneration in Parkinson's disease. Neuron, 2021, 109, 3758-3774.e11.	8.1	26
79	Canine inherited ataxia. Annals of Neurology, 1981, 9, 492-498.	5.3	25
80	Genetic analysis of neurodegenerative diseases in a pathology cohort. Neurobiology of Aging, 2019, 76, 214.e1-214.e9.	3.1	25
81	A brain proteomic signature of incipient Alzheimer's disease in young <i>APOE</i> ε4 carriers identifies novel drug targets. Science Advances, 2021, 7, eabi8178.	10.3	23
82	Multiplexed Phosphoproteomic Study of Brain in Patients with Alzheimer's Disease and Age-Matched Cognitively Healthy Controls. OMICS A Journal of Integrative Biology, 2020, 24, 216-227.	2.0	22
83	Hippocampal sclerosis dementia with the C9ORF72 hexanucleotide repeat expansion. Neurobiology of Aging, 2014, 35, 2419.e17-2419.e21.	3.1	21
84	Abnormal CSF amyloid-β42 and tau levels in hip fracture patients without dementia. PLoS ONE, 2018, 13, e0204695.	2.5	19
85	Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathologica, 2022, 143, 33-53.	7.7	19
86	Activated endothelial cells induce a distinct type of astrocytic reactivity. Communications Biology, 2022, 5, 282.	4.4	19
87	The "Race―Toward Diversity, Inclusion, and Equity in Pathology: The Johns Hopkins Experience. Academic Pathology, 2019, 6, 237428951987310.	1.1	18
88	Neuronal-Derived EV Biomarkers Track Cognitive Decline in Alzheimer's Disease. Cells, 2022, 11, 436.	4.1	18
89	Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological α-synuclein. Cell Reports, 2022, 38, 110358.	6.4	18
90	Expression of mutant DISC1 in Purkinje cells increases their spontaneous activity and impairs cognitive and social behaviors in mice. Neurobiology of Disease, 2017, 103, 144-153.	4.4	17

#	Article	IF	CITATIONS
91	Mapping tracts in the human subthalamic area by 11.7T ex vivo diffusion tensor imaging. Brain Structure and Function, 2020, 225, 1293-1312.	2.3	17
92	Brainstem Pathologies Correlate With Depression and Psychosis in Parkinson's Disease. American Journal of Geriatric Psychiatry, 2021, 29, 958-968.	1.2	17
93	Discrete Pools of Oligomeric Amyloid-β Track with Spatial Learning Deficits in a Mouse Model of Alzheimer Amyloidosis. American Journal of Pathology, 2018, 188, 739-756.	3.8	16
94	Amyloid β toxic conformer has dynamic localization in the human inferior parietal cortex in absence of amyloid plaques. Scientific Reports, 2018, 8, 16895.	3.3	15
95	Hippocampal sclerosis dementia: An amnesic variant of frontotemporal degeneration. Dementia E Neuropsychologia, 2013, 7, 83-87.	0.8	13
96	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	3.1	13
97	Estrogen receptor activation contributes to RNF146 expression and neuroprotection in Parkinson's disease models. Oncotarget, 2017, 8, 106721-106739.	1.8	13
98	Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity. PLoS ONE, 2015, 10, e0143854.	2.5	12
99	GDE2-RECK controls ADAM10 α-secretase–mediated cleavage of amyloid precursor protein. Science Translational Medicine, 2021, 13, .	12.4	12
100	Deubiquitinase CYLD acts as a negative regulator of dopamine neuron survival in Parkinson's disease. Science Advances, 2022, 8, eabh1824.	10.3	12
101	<i>ADORA1</i> mutations are not a common cause of Parkinson's disease and dementia with Lewy bodies. Movement Disorders, 2017, 32, 298-299.	3.9	11
102	APOε2 and education in cognitively normal older subjects with high levels of AD pathology at autopsy: findings from the Nun Study. Oncotarget, 2015, 6, 14082-14091.	1.8	11
103	Nemo-like kinase reduces mutant huntingtin levels and mitigates Huntington's disease. Human Molecular Genetics, 2020, 29, 1340-1352.	2.9	10
104	Domainâ€specific cognitive impairment in nonâ€demented Parkinson's disease psychosis. International Journal of Geriatric Psychiatry, 2018, 33, e131-e139.	2.7	9
105	Onset and Remission of Psychosis in Parkinson's Disease: Pharmacologic and Motoric Markers. Movement Disorders Clinical Practice, 2018, 5, 31-38.	1.5	9
106	Gait function and locus coeruleus Lewy body pathology in 51 Parkinson's disease patients. Parkinsonism and Related Disorders, 2016, 33, 102-106.	2.2	8
107	Persistently Elevated mTOR Complex 1-S6 Kinase 1 Disrupts DARPP-32–Dependent D1 Dopamine Receptor Signaling and Behaviors. Biological Psychiatry, 2021, 89, 1058-1072.	1.3	8
108	Altered CSMD1 Expression Alters Cocaine-Conditioned Place Preference: Mutual Support for a Complex Locus from Human and Mouse Models. PLoS ONE, 2015, 10, e0120908.	2.5	5

#	Article	IF	CITATIONS
109	NMDA Receptor Antagonism for Neuroprotection in a Canine Model of Hypothermic Circulatory Arrest. Journal of Surgical Research, 2021, 260, 177-189.	1.6	2
110	Neuronal cell death in human neurodegenerative diseases and their animal/cell models. , 2005, , 96-155.		1
111	P4-187: Midlife adiposity predicts earlier onset of Alzheimer's dementia, neuropathology, and presymptomatic cerebral amyloid accumulation. , 2015, 11, P851-P852.		1
112	P3â€451: QUANTIFICATION OF 3D TANGLE DISTRIBUTION IN MEDIAL TEMPORAL LOBE USING MULTIMODAL IMAGE REGISTRATION AND CONVOLUTIONAL NEURAL NETWORKS. Alzheimer's and Dementia, 2018, 14, P1291.	0.8	1
113	P1-207: Alzheimer's lesions in the brains of young subjects. , 2015, 11, P429-P429.		Ο
114	O4-12-02: Protein co-expression network analysis in Alzheimer's disease. , 2015, 11, P299-P299.		0
115	P2â€106: Brain and Blood Metabolite Signatures of Pathology and Progression in Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P652.	0.8	Ο
116	P2â€294: The Acute Phase Protein Alphaâ€2â€Macroglobulin Predicts Risk of Incident Alzheimer's Disease and Modulates TAU Pathology through the RCAN1 alcineurin Pathway. Alzheimer's and Dementia, 2016, 12, P745.	0.8	0
117	A rapidly progressive dementia case with pathological diagnosis of FTLD-UPS. Acta Neuropathologica, 2016, 132, 309-311.	7.7	Ο
118	[P3–207]: THE ENDOPHENOTYPE ASSOCIATION SCORE IN EARLY ALZHEIMER'S DISEASE (EASEâ€AD): DISCOVERING NOVEL BLOOD AND BRAIN METABOLITE SIGNATURES OF PATHOLOGY AND PROGRESSION. Alzheimer's and Dementia, 2017, 13, P1015.	0.8	0
119	[P3–166]: NEUROTRANSMITTERâ€SPECIFIC METABOLISM IS RELATED TO SEVERITY OF PATHOLOGY AND SYMPTOM EXPRESSION IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P997.	0.8	Ο
120	P2â€⊋76: BRAIN AND BLOOD OXYSTEROL METABOLISM ARE RELATED TO ALZHEIMER'S DISEASE PATHOGENESIS Alzheimer's and Dementia, 2018, 14, P783.	0.8	0
121	Expanding the Computational Anatomy Gateway from clinical imaging to basic neuroscience research. , 2019, , .		0
122	A consensus proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Alzheimer's and Dementia, 2020, 16, e039504.	0.8	0
123	Primary angiitis of the central nervous system presenting as chronic superior sagittal sinus thrombosis. FASEB Journal, 2007, 21, A396.	0.5	0
124	Differential nuclear and nucleolar hypertrophy of anterior and posterior cingulate neurons in asymptomatic subjects with AD pathology. FASEB Journal, 2007, 21, A19.	0.5	0
125	Biotinylated antiâ€Aβ antibody as a tool to diagnose preâ€clinical stages of Alzheimer's Disease (AD). FASEB Journal, 2007, 21, A20.	0.5	0
126	Neuronal hypertrophy in asymptomatic Alzheimer's Disease in the BLSA. FASEB Journal, 2008, 22, 707.1.	0.5	0