
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2180848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554, 224-228.	13.7	970
2	Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nature Communications, 2015, 6, 6929.	5.8	969
3	A radiative cooling structural material. Science, 2019, 364, 760-763.	6.0	856
4	Challenges and Opportunities for Solar Evaporation. Joule, 2019, 3, 683-718.	11.7	850
5	Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590, 47-56.	13.7	711
6	A Highâ€Performance Selfâ€Regenerating Solar Evaporator for Continuous Water Desalination. Advanced Materials, 2019, 31, e1900498.	11.1	638
7	Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5, 642-666.	23.3	616
8	All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy and Environmental Science, 2017, 10, 538-545.	15.6	602
9	Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 2017, 29, 1701756.	11.1	584
10	3Dâ€Printed, Allâ€inâ€One Evaporator for Highâ€Efficiency Solar Steam Generation under 1 Sun Illumination. Advanced Materials, 2017, 29, 1700981.	11.1	511
11	Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy and Environmental Science, 2019, 12, 1558-1567.	15.6	482
12	A Hierarchical N/Sâ€Codoped Carbon Anode Fabricated Facilely from Cellulose/Polyaniline Microspheres for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1501929.	10.2	460
13	High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3584-3589.	3.3	412
14	Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Materials, 2017, 8, 161-168.	9.5	408
15	Muscleâ€Inspired Highly Anisotropic, Strong, Ionâ€Conductive Hydrogels. Advanced Materials, 2018, 30, e1801934.	11.1	408
16	Thick Electrode Batteries: Principles, Opportunities, and Challenges. Advanced Energy Materials, 2019, 9, 1901457.	10.2	407
17	Scalable and Highly Efficient Mesoporous Woodâ€Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport. Advanced Functional Materials, 2018, 28, 1707134.	7.8	366
18	Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 140-147.	7.3	364

#	Article	IF	CITATIONS
19	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4, eaar3724.	4.7	336
20	Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2018, 10, 1104-1112.	4.0	327
21	Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy, 2017, 41, 201-209.	8.2	316
22	A strong, biodegradable and recyclable lignocellulosic bioplastic. Nature Sustainability, 2021, 4, 627-635.	11.5	291
23	3Dâ€Printed Allâ€Fiber Liâ€Ion Battery toward Wearable Energy Storage. Advanced Functional Materials, 2017, 27, 1703140.	7.8	270
24	Three-Dimensional Printed Thermal Regulation Textiles. ACS Nano, 2017, 11, 11513-11520.	7.3	261
25	Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries. Scientific Reports, 2015, 5, 9254.	1.6	255
26	Highâ€Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. Advanced Energy Materials, 2018, 8, 1701616.	10.2	255
27	Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry. Accounts of Chemical Research, 2018, 51, 3154-3165.	7.6	251
28	Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge. CheM, 2018, 4, 544-554.	5.8	246
29	Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. Nano Letters, 2017, 17, 3792-3797.	4.5	243
30	A Dynamic Gel with Reversible and Tunable Topological Networks and Performances. Matter, 2020, 2, 390-403.	5.0	216
31	Highly Conductive, Lightweight, Lowâ€Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors. Advanced Energy Materials, 2017, 7, 1700595.	10.2	210
32	Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry A, 2018, 6, 18839-18846.	5.2	208
33	Lignin as a Woodâ€Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic Replacement. Advanced Functional Materials, 2020, 30, 1906307.	7.8	208
34	High Performance, Flexible, Solidâ€State Supercapacitors Based on a Renewable and Biodegradable Mesoporous Cellulose Membrane. Advanced Energy Materials, 2017, 7, 1700739.	10.2	202
35	A Strong, Tough, and Scalable Structural Material from Fastâ€Growing Bamboo. Advanced Materials, 2020, 32, e1906308.	11.1	202
36	A carbon-based 3D current collector with surface protection for Li metal anode. Nano Research, 2017, 10, 1356-1365.	5.8	200

#	Article	IF	CITATIONS
37	3D Wettable Framework for Dendriteâ€Free Alkali Metal Anodes. Advanced Energy Materials, 2018, 8, 1800635.	10.2	196
38	Flexible and Binderâ€Free Electrodes of Sb/rGO and Na ₃ V ₂ (PO ₄) ₃ /rGO Nanocomposites for Sodiumâ€lon Batteries. Small, 2015, 11, 3822-3829.	5.2	184
39	Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 2020, 11, 3836.	5.8	180
40	Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Energy Storage Materials, 2018, 15, 234-241.	9.5	179
41	Three-Dimensional, Solid-State Mixed Electron–Ion Conductive Framework for Lithium Metal Anode. Nano Letters, 2018, 18, 3926-3933.	4.5	175
42	Highly porous Li 4 Ti 5 O 12 /C nanofibers for ultrafast electrochemical energy storage. Nano Energy, 2014, 10, 163-171.	8.2	165
43	Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Advanced Energy Materials, 2018, 8, 1802398.	10.2	163
44	Hierarchically Porous, Ultrathick, "Breathable―Woodâ€Derived Cathode for Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2018, 8, 1701203.	10.2	161
45	NASICON-Structured NaTi ₂ (PO ₄) ₃ @C Nanocomposite as the Low Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 2238-2246.	4.0	159
46	Enabling High-Areal-Capacity Lithium–Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. ACS Nano, 2017, 11, 4801-4807.	7.3	151
47	A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Science Advances, 2019, 5, eaau4238.	4.7	148
48	TiN as a simple and efficient polysulfide immobilizer for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 17711-17717.	5.2	146
49	Transparent, Anisotropic Biofilm with Aligned Bacterial Cellulose Nanofibers. Advanced Functional Materials, 2018, 28, 1707491.	7.8	142
50	Integrated Intercalationâ€Based and Interfacial Sodium Storage in Grapheneâ€Wrapped Porous Li ₄ Ti ₅ O ₁₂ Nanofibers Composite Aerogel. Advanced Energy Materials, 2016, 6, 1600322.	10.2	141
51	Superflexible Wood. ACS Applied Materials & amp; Interfaces, 2017, 9, 23520-23527.	4.0	141
52	Clear Wood toward High-Performance Building Materials. ACS Nano, 2019, 13, 9993-10001.	7.3	138
53	Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374, 465-471.	6.0	137
54	3Dâ€Printed Graphene Oxide Framework with Thermal Shock Synthesized Nanoparticles for Li O ₂ Batteries. Advanced Functional Materials, 2018, 28, 1805899.	7.8	135

#	Article	IF	CITATIONS
55	Celluloseâ€Nanofiberâ€Enabled 3D Printing of a Carbonâ€Nanotube Microfiber Network. Small Methods, 2017, 1, 1700222.	4.6	130
56	Transient, <i>in situ</i> synthesis of ultrafine ruthenium nanoparticles for a high-rate Li–CO ₂ battery. Energy and Environmental Science, 2019, 12, 1100-1107.	15.6	129
57	Dense, Selfâ€Formed Char Layer Enables a Fireâ€Retardant Wood Structural Material. Advanced Functional Materials, 2019, 29, 1807444.	7.8	125
58	A Clear, Strong, and Thermally Insulated Transparent Wood for Energy Efficient Windows. Advanced Functional Materials, 2020, 30, 1907511.	7.8	124
59	From Wood to Textiles: Topâ€Đown Assembly of Aligned Cellulose Nanofibers. Advanced Materials, 2018, 30, e1801347.	11.1	121
60	Natureâ€Inspired Triâ€Pathway Design Enabling Highâ€Performance Flexible Li–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1802964.	10.2	121
61	Reed Leaves Inspired Silica Nanofibrous Aerogels with Parallel-Arranged Vessels for Salt-Resistant Solar Desalination. ACS Nano, 2021, 15, 12256-12266.	7.3	121
62	Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy, 2017, 36, 366-373.	8.2	117
63	Flexible lithium–CO ₂ battery with ultrahigh capacity and stable cycling. Energy and Environmental Science, 2018, 11, 3231-3237.	15.6	117
64	Conductive Wood for High-Performance Structural Electromagnetic Interference Shielding. Chemistry of Materials, 2020, 32, 5280-5289.	3.2	117
65	Bioinspired Solarâ€Heated Carbon Absorbent for Efficient Cleanup of Highly Viscous Crude Oil. Advanced Functional Materials, 2019, 29, 1900162.	7.8	116
66	3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. Energy Storage Materials, 2018, 14, 376-382.	9.5	114
67	Conformal N-doped carbon on nanoporous TiO2 spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10375.	5.2	113
68	Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2022, 5, 235-244.	11.5	113
69	Nanocellulose-based films and their emerging applications. Current Opinion in Solid State and Materials Science, 2019, 23, 100764.	5.6	109
70	Allâ€Natural, Degradable, Rolledâ€Up Straws Based on Cellulose Micro―and Nanoâ€Hybrid Fibers. Advanced Functional Materials, 2020, 30, 1910417.	7.8	109
71	All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Materials, 2018, 15, 458-464.	9.5	108
72	Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nature Communications, 2022, 13, .	5.8	108

#	Article	IF	CITATIONS
73	Solar-assisted fabrication of large-scale, patternable transparent wood. Science Advances, 2021, 7, .	4.7	107
74	Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material. ACS Nano, 2020, 14, 5194-5202.	7.3	105
75	General, Vertical, Three-Dimensional Printing of Two-Dimensional Materials with Multiscale Alignment. ACS Nano, 2019, 13, 12653-12661.	7.3	101
76	3D interconnected porous NiMoO ₄ nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22081-22087.	5.2	98
77	Highly Elastic Hydrated Cellulosic Materials with Durable Compressibility and Tunable Conductivity. ACS Nano, 2020, 14, 16723-16734.	7.3	98
78	Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement. Small Methods, 2019, 3, 1800176.	4.6	97
79	In Operando Mechanism Analysis on Nanocrystalline Silicon Anode Material for Reversible and Ultrafast Sodium Storage. Advanced Materials, 2017, 29, 1604708.	11.1	95
80	Fireâ€Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating. Advanced Functional Materials, 2020, 30, 1909196.	7.8	94
81	Coordination of Surfaceâ€Induced Reaction and Intercalation: Toward a Highâ€Performance Carbon Anode for Sodiumâ€Ion Batteries. Advanced Science, 2017, 4, 1600500.	5.6	92
82	Textile Inspired Lithium–Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways. Advanced Materials, 2018, 30, 1704907.	11.1	92
83	Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 2019, 11, 5919-5927.	4.0	91
84	A strategy of selective and dendrite-free lithium deposition for lithium batteries. Nano Energy, 2017, 42, 262-268.	8.2	90
85	In Situ Lignin Modification toward Photonic Wood. Advanced Materials, 2021, 33, e2001588.	11.1	86
86	Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating. ACS Nano, 2021, 15, 14928-14937.	7.3	85
87	A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Materials Today, 2019, 30, 17-25.	8.3	83
88	Salinityâ€Gradient Power Generation with Ionized Wood Membranes. Advanced Energy Materials, 2020, 10, 1902590.	10.2	83
89	Highly Anisotropic Conductors. Advanced Materials, 2017, 29, 1703331.	11.1	80
90	Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries. Carbon, 2014, 69, 302-310.	5.4	79

#	Article	IF	CITATIONS
91	In Situ "Chainmail Catalyst―Assembly in Lowâ€Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation. Advanced Energy Materials, 2018, 8, 1801289.	10.2	79
92	A Highly Conductive Cationic Wood Membrane. Advanced Functional Materials, 2019, 29, 1902772.	7.8	79
93	All Natural, High Efficient Groundwater Extraction via Solar Steam/Vapor Generation. Advanced Sustainable Systems, 2019, 3, 1800055.	2.7	78
94	Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device Applications. Advanced Materials, 2021, 33, e2002890.	11.1	75
95	Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage. Journal of Alloys and Compounds, 2014, 586, 208-215.	2.8	74
96	Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. Materials Today, 2021, 51, 27-38.	8.3	73
97	Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood. , 2019, 1, 354-361.		72
98	In Situ Wood Delignification toward Sustainable Applications. Accounts of Materials Research, 2021, 2, 606-620.	5.9	71
99	A Stiffnessâ€&witchable, Biomimetic Smart Material Enabled by Supramolecular Reconfiguration. Advanced Materials, 2022, 34, e2107857.	11.1	71
100	A strong, flame-retardant, and thermally insulating wood laminate. Chemical Engineering Journal, 2020, 383, 123109.	6.6	69
101	Synthesis of Metal Oxide Nanoparticles by Rapid, Highâ€Temperature 3D Microwave Heating. Advanced Functional Materials, 2019, 29, 1904282.	7.8	65
102	Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mechanics Letters, 2019, 29, 100463.	2.0	65
103	High-Performance, Scalable Wood-Based Filtration Device with a Reversed-Tree Design. Chemistry of Materials, 2020, 32, 1887-1895.	3.2	65
104	Scalable Wood Hydrogel Membrane with Nanoscale Channels. ACS Nano, 2021, 15, 11244-11252.	7.3	60
105	Facile synthesis of bimodal porous graphitic carbon nitride nanosheets as efficient photocatalysts for hydrogen evolution. Nano Energy, 2018, 50, 376-382.	8.2	58
106	Uniform, Scalable, High-Temperature Microwave Shock for Nanoparticle Synthesis through Defect Engineering. Matter, 2019, 1, 759-769.	5.0	58
107	Stamping Flexible Li Alloy Anodes. Advanced Materials, 2021, 33, e2005305.	11.1	58
108	TiO ₂ –B Nanosheets/Anatase Nanocrystals Coâ€Anchored on Nanoporous Graphene: In Situ Reduction–Hydrolysis Synthesis and Their Superior Rate Performance as an Anode Material. Chemistry - A European Journal, 2014, 20, 1383-1388.	1.7	53

#	Article	IF	CITATIONS
109	An Energyâ€Efficient, Woodâ€Derived Structural Material Enabled by Pore Structure Engineering towards Building Efficiency. Small Methods, 2020, 4, 1900747.	4.6	53
110	Bismuth oxyiodide nanosheets: a novel high-energy anode material for lithium-ion batteries. Chemical Communications, 2015, 51, 2798-2801.	2.2	50
111	Highly Efficient Water Treatment via a Wood-Based and Reusable Filter. , 2020, 2, 430-437.		50
112	Architectural design and phase engineering of N/B-codoped TiO ₂ (B)/anatase nanotube assemblies for high-rate and long-life lithium storage. Journal of Materials Chemistry A, 2015, 3, 22591-22598.	5.2	49
113	Anisotropic, Mesoporous Microfluidic Frameworks with Scalable, Aligned Cellulose Nanofibers. ACS Applied Materials & Interfaces, 2018, 10, 7362-7370.	4.0	49
114	Holey three-dimensional wood-based electrode for vanadium flow batteries. Energy Storage Materials, 2020, 27, 327-332.	9.5	49
115	Janus Fibrous Mats Based Suspended Type Evaporator for Salt Resistant Solar Desalination and Salt Recovery. Small, 2022, 18, e2107156.	5.2	48
116	Binding TiO ₂ -B nanosheets with N-doped carbon enables highly durable anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8172-8179.	5.2	47
117	Single-digit-micrometer thickness wood speaker. Nature Communications, 2019, 10, 5084.	5.8	45
118	Decoupling Ionic and Electronic Pathways in Low-Dimensional Hybrid Conductors. Journal of the American Chemical Society, 2019, 141, 17830-17837.	6.6	42
119	Wood Nanomaterials and Nanotechnologies. Advanced Materials, 2021, 33, e2006207.	11.1	39
120	Synthesis of Hierarchically Porous Sandwich‣ike Carbon Materials for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2016, 22, 16863-16871.	1.7	38
121	Tailoring grain growth and densification toward a high-performance solid-state electrolyte membrane. Materials Today, 2021, 42, 41-48.	8.3	32
122	Precision Imprinted Nanostructural Wood. Advanced Materials, 2019, 31, e1903270.	11.1	31
123	Ionic-Liquid-Assisted Synthesis of Self-Assembled TiO2-B Nanosheets under Microwave Irradiation and Their Enhanced Lithium Storage Properties. European Journal of Inorganic Chemistry, 2013, 2013, 5320-5328.	1.0	28
124	Biomaterial-assisted synthesis of AgCl@Ag concave cubes with efficient visible-light-driven photocatalytic activity. CrystEngComm, 2014, 16, 649-653.	1.3	27
125	Strong, Water-Stable Ionic Cable from Bio-Hydrogel. Chemistry of Materials, 2019, 31, 9288-9294.	3.2	24
126	Self-assembled 3D hierarchical sheaf-like Nb3O7(OH) nanostructures with enhanced photocatalytic activity. Nanoscale, 2015, 7, 1963-1969.	2.8	22

#	Article	IF	CITATIONS
127	Rational synthesis of carbon-coated hollow Ge nanocrystals with enhanced lithium-storage properties. Nanoscale, 2016, 8, 12215-12220.	2.8	22
128	Thermal Shock Synthesis of Nanocatalyst by 3Dâ€Printed Miniaturized Reactors. Small, 2020, 16, e2000509.	5.2	21
129	Strong and Superhydrophobic Wood with Aligned Cellulose Nanofibers as a Waterproof Structural Material ^{â€} . Chinese Journal of Chemistry, 2020, 38, 823-829.	2.6	21
130	3Dâ€Printed, Highâ€Porosity, Highâ€Strength Graphite Aerogel. Small Methods, 2021, 5, e2001188.	4.6	21
131	Fabrication of Cellulose–Graphite Foam via Ion Cross-linking and Ambient-Drying. Nano Letters, 2022, 22, 3931-3938.	4.5	21
132	A self-buffering structure for application in high-performance sodium-ion batteries. Energy Storage Materials, 2018, 15, 242-248.	9.5	19
133	A bio-inspired, hierarchically porous structure with a decoupled fluidic transportation and evaporative pathway toward high-performance evaporation. Journal of Materials Chemistry A, 2021, 9, 9745-9752.	5.2	19
134	Super Elastic and Thermally Insulating Carbon Aerogel: Go Tubular Like Polar Bear Hair. Matter, 2019, 1, 36-38.	5.0	17
135	Shape-driven arrest of coffee stain effect drives the fabrication of carbon-nanotube-graphene-oxide inks for printing embedded structures and temperature sensors. Nanoscale, 2019, 11, 23402-23415.	2.8	16
136	Controlled Nutrient Delivery through a pH-Responsive Wood Vehicle. ACS Nano, 2022, 16, 2198-2208.	7.3	16
137	Phase control of TiO 2 nanobelts by microwave irradiation as anode materials with tunable Li-diffusion kinetics. Materials Research Bulletin, 2017, 96, 365-371.	2.7	14
138	Potential of zero charge regulating highly selective removal of nitrate anions through capacitive deionization. Chemical Engineering Journal, 2022, 442, 136287.	6.6	14
139	Microwave-assisted synthesis of self-assembled BiO1.84H0.08 hierarchical nanostructures as a new photocatalyst. Applied Surface Science, 2014, 319, 244-249.	3.1	13
140	Continuous Fly-Through High-Temperature Synthesis of Nanocatalysts. Nano Letters, 2021, 21, 4517-4523.	4.5	13
141	Granadilla-Inspired Structure Design for Conversion/Alloy-Reaction Electrode with Integrated Lithium Storage Behaviors. ACS Applied Materials & Interfaces, 2017, 9, 15470-15476.	4.0	11
142	Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Data in Brief, 2018, 20, 1999-2002.	0.5	11
143	Wood Ionic Cable. Small, 2021, 17, e2008200.	5.2	10
144	One-Step, Catalyst-Free, Scalable in Situ Synthesis of Single-Crystal Aluminum Nanowires in Confined Graphene Space. ACS Applied Materials & Interfaces, 2019, 11, 6009-6014.	4.0	7

#	Article	IF	CITATIONS
145	Catalyst-Free <i>In Situ</i> Carbon Nanotube Growth in Confined Space <i>via</i> High Temperature Gradient. Research, 2018, 2018, 1793784.	2.8	7
146	A low-corrosivity structural timber. Cell Reports Physical Science, 2022, 3, 100921.	2.8	2
147	Ion Transport and Regulation: Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device Applications (Adv. Mater. 28/2021). Advanced Materials, 2021, 33, 2170221.	11.1	0