Robert N Weinreb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2180729/publications.pdf

Version: 2024-02-01

464 papers 30,464 citations

4388 86 h-index 146 g-index

472 all docs

472 docs citations

times ranked

472

11739 citing authors

#	Article	IF	Citations
1	The Pathophysiology and Treatment of Glaucoma. JAMA - Journal of the American Medical Association, 2014, 311, 1901.	7.4	2,572
2	Primary open-angle glaucoma. Lancet, The, 2004, 363, 1711-1720.	13.7	1,728
3	Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. American Journal of Ophthalmology, 2005, 139, 44-55.	3.3	589
4	Retinal Nerve Fiber Layer Imaging with Spectral-Domain Optical Coherence Tomography. Ophthalmology, 2009, 116, 1257-1263.e2.	5.2	448
5	Comparison of the GDx VCC Scanning Laser Polarimeter, HRT II ConfocalScanning Laser Ophthalmoscope, and Stratus OCT Optical Coherence Tomographfor the Detection of Glaucoma. JAMA Ophthalmology, 2004, 122, 827.	2.4	423
6	Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes., 2016, 57, OCT451.		392
7	Twenty-four-Hour Intraocular Pressure Pattern Associated with Early Glaucomatous Changes. , 2003, 44, 1586.		387
8	Mechanisms of optic nerve damage in primary open angle glaucoma. Survey of Ophthalmology, 1994, 39, 23-42.	4.0	377
9	Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology, 2016, 123, 2498-2508.	5.2	347
10	Primary open-angle glaucoma. Nature Reviews Disease Primers, 2016, 2, 16067.	30.5	319
10	Primary open-angle glaucoma. Nature Reviews Disease Primers, 2016, 2, 16067. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography11The authors have no financial interest in the Optical Coherence Tomography technology. Ophthalmology, 2000, 107, 2278-2282.	30.5 5.2	319
	Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography 11The authors have no financial interest in the Optical Coherence Tomography		
11	Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography11The authors have no financial interest in the Optical Coherence Tomography technology. Ophthalmology, 2000, 107, 2278-2282. Evaluation of the Influence of Corneal Biomechanical Properties on Intraocular Pressure	5.2	311
11 12	Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography11The authors have no financial interest in the Optical Coherence Tomography technology. Ophthalmology, 2000, 107, 2278-2282. Evaluation of the Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurements Using the Ocular Response Analyzer. Journal of Glaucoma, 2006, 15, 364-370. Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve	5.2 1.6	311 279
11 12 13	Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography11The authors have no financial interest in the Optical Coherence Tomography technology. Ophthalmology, 2000, 107, 2278-2282. Evaluation of the Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurements Using the Ocular Response Analyzer. Journal of Glaucoma, 2006, 15, 364-370. Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma. PLoS Genetics, 2012, 8, e1002654.	5.2 1.6 3.5	311 279 276
11 12 13	Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography 11The authors have no financial interest in the Optical Coherence Tomography technology. Ophthalmology, 2000, 107, 2278-2282. Evaluation of the Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurements Using the Ocular Response Analyzer. Journal of Glaucoma, 2006, 15, 364-370. Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma. PLoS Genetics, 2012, 8, e1002654. The African Descent and Glaucoma Evaluation Study (ADAGES). JAMA Ophthalmology, 2009, 127, 1136.	5.2 1.6 3.5 2.4	311 279 276 269
11 12 13 14	Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography11The authors have no financial interest in the Optical Coherence Tomography technology. Ophthalmology, 2000, 107, 2278-2282. Evaluation of the Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurements Using the Ocular Response Analyzer. Journal of Glaucoma, 2006, 15, 364-370. Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma. PLoS Genetics, 2012, 8, e1002654. The African Descent and Glaucoma Evaluation Study (ADAGES). JAMA Ophthalmology, 2009, 127, 1136. Optic Disc Change with Incipient Myopia of Childhood. Ophthalmology, 2012, 119, 21-26.e3. Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence	5.2 1.6 3.5 2.4	311 279 276 269 249

#	Article	IF	Citations
19	Corneal Hysteresis as a Risk Factor for Glaucoma Progression: A Prospective Longitudinal Study. Ophthalmology, 2013, 120, 1533-1540.	5.2	232
20	Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 2016, 171, 75-83.	3.3	221
21	Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nature Genetics, 2016, 48, 189-194.	21.4	211
22	Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs. Scientific Reports, 2018, 8, 16685.	3.3	211
23	Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect. Ophthalmology, 2017, 124, 709-719.	5.2	202
24	The Structure and Function Relationship in Glaucoma: Implications for Detection of Progression and Measurement of Rates of Change. , 2012, 53, 6939.		200
25	Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma. Ophthalmology, 2016, 123, 2509-2518.	5.2	194
26	Adjusting the Dose of 5-Fluorouracil after Filtration Surgery to Minimize Side Effects. Ophthalmology, 1987, 94, 564-570.	5.2	192
27	Reversal of Lamina Cribrosa Displacement and Thickness after Trabeculectomy in Glaucoma. Ophthalmology, 2012, 119, 1359-1366.	5.2	189
28	Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmology, 2019, 137, 1353.	2.5	188
29	Visualization of the Lamina Cribrosa Using Enhanced Depth Imaging Spectral-Domain Optical Coherence Tomography. American Journal of Ophthalmology, 2011, 152, 87-95.e1.	3.3	183
30	Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. American Journal of Ophthalmology, 2004, 137, 863-871.	3.3	178
31	Structure–Function Relationships Using Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and Scanning Laser Polarimetry. , 2006, 47, 2889.		174
32	Comparison of the Diagnostic Accuracies of the Spectralis, Cirrus, and RTVue Optical Coherence Tomography Devices in Glaucoma. Ophthalmology, 2011, 118, 1334-1339.	5.2	174
33	Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Transactions on Biomedical Engineering, 2002, 49, 963-974.	4.2	173
34	Correlation between office and peak nocturnal intraocular pressures in healthy subjects and glaucoma patients. American Journal of Ophthalmology, 2005, 139, 320-324.	3.3	173
35	Baseline Topographic Optic Disc Measurements Are Associated With the Development of Primary Open-Angle Glaucoma. JAMA Ophthalmology, 2005, 123, 1188.	2.4	171
36	Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. American Journal of Ophthalmology, 2004, 138, 592-601.	3.3	169

#	Article	IF	CITATIONS
37	Comparison of Different Spectral Domain Optical Coherence Tomography Scanning Areas for Glaucoma Diagnosis. Ophthalmology, 2010, 117, 1692-1699.e1.	5.2	169
38	Efficacy and Safety of Memantine Treatment for Reduction of Changes Associated with Experimental Glaucoma in Monkey, II: Structural Measures. , 2004, 45, 2640.		168
39	Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in AdvancedÂGlaucoma. American Journal of Ophthalmology, 2017, 175, 37-44.	3.3	167
40	Validation of a Predictive Model to Estimate the Risk of Conversion From Ocular Hypertension to Glaucoma. JAMA Ophthalmology, 2005, 123, 1351.	2.4	166
41	Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. American Journal of Ophthalmology, 2017, 182, 107-117.	3.3	165
42	Retinal Nerve Fiber Layer Imaging with Spectral-domain Optical Coherence Tomography. Ophthalmology, 2012, 119, 1858-1866.	5.2	163
43	Rates of Retinal Nerve Fiber Layer Thinning in Glaucoma Suspect Eyes. Ophthalmology, 2014, 121, 1350-1358.	5.2	157
44	Influence of Disease Severity and Optic Disc Size on the Diagnostic Performance of Imaging Instruments in Glaucoma., 2006, 47, 1008.		155
45	Continuous 24-Hour Monitoring of Intraocular Pressure Patterns With a Contact Lens Sensor. JAMA Ophthalmology, 2012, 130, 1534.	2.4	154
46	Baseline Optical Coherence Tomography Predicts the Development of Glaucomatous Change in Glaucoma Suspects. American Journal of Ophthalmology, 2006, 142, 576-582.e1.	3.3	153
47	Comparison of the nocturnal effects of once-daily timolol and latanoprost on intraocular pressure. American Journal of Ophthalmology, 2004, 138, 389-395.	3.3	149
48	Longitudinal Changes in Quality of Life and Rates of Progressive Visual Field Loss in Glaucoma Patients. Ophthalmology, 2015, 122, 293-301.	5.2	144
49	24-2 Visual Fields Miss Central Defects Shown on 10-2 Tests in Glaucoma Suspects, Ocular Hypertensives, and Early Glaucoma. Ophthalmology, 2017, 124, 1449-1456.	5.2	142
50	Impact of Age-related Change of Retinal Nerve Fiber Layer and Macular Thicknesses on Evaluation of Glaucoma Progression. Ophthalmology, 2013, 120, 2485-2492.	5.2	134
51	A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study. British Journal of Ophthalmology, 2015, 99, 738-745.	3.9	132
52	Estimating Lead Time Gained by OpticalÂCoherence Tomography in DetectingÂGlaucoma before Development ofÂVisual Field Defects. Ophthalmology, 2015, 122, 2002-2009.	5.2	131
53	Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology, 2018, 125, 1720-1728.	5.2	131
54	African Descent and Glaucoma Evaluation Study (ADAGES). JAMA Ophthalmology, 2010, 128, 541.	2.4	125

#	Article	IF	CITATIONS
55	A Combined Index of Structure and Function for Staging Glaucomatous Damage. JAMA Ophthalmology, 2012, 130, 1107-16.	2.4	125
56	Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. British Journal of Ophthalmology, 2017, 101, 1066-1070.	3.9	125
57	Reversal of Lamina Cribrosa Displacement after Intraocular Pressure Reduction in Open-Angle Glaucoma. Ophthalmology, 2013, 120, 553-559.	5.2	124
58	Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. British Journal of Ophthalmology, 2018, 102, 352-357.	3.9	122
59	Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma. Ophthalmology, 2019, 126, 980-988.	5.2	121
60	Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma. Ophthalmology, 2011, 118, 1551-1557.	5.2	116
61	Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning. Ophthalmology, 2016, 123, 1201-1210.	5.2	115
62	Structure and function evaluation (SAFE): I. criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP)11Internet Advance publication at ajo.com June 17, 2002 American Journal of Ophthalmology, 2002, 134, 177-185.	3.3	114
63	Use of Progressive Glaucomatous Optic Disk Change as the Reference Standard for Evaluation of Diagnostic Tests in Glaucoma. American Journal of Ophthalmology, 2005, 139, 1010-1018.	3.3	114
64	Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nature Genetics, 2017, 49, 993-1004.	21.4	114
65	Retinal Nerve Fiber Layer Imaging with Spectral-Domain Optical Coherence Tomography: Interpreting the RNFL Maps in Healthy Myopic Eyes. , 2012, 53, 7194.		113
66	Optic Neuropathy Induced by Experimentally Reduced Cerebrospinal Fluid Pressure in Monkeys. , 2014, 55, 3067.		113
67	Combining Structural and Functional Testing for Detection of Glaucoma. Ophthalmology, 2006, 113, 1593-1602.	5.2	112
68	Comparison of Different Spectral Domain OCT Scanning Protocols for Diagnosing Preperimetric Glaucoma., 2013, 54, 3417.		112
69	Agreement Among Spectral-Domain Optical Coherence Tomography Instruments for Assessing Retinal Nerve Fiber Layer Thickness. American Journal of Ophthalmology, 2011, 151, 85-92.e1.	3.3	111
70	Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma. Ophthalmology, 2011, 118, 1558-1562.	5.2	111
71	Optical Coherence Tomography Angiography in Glaucoma. Journal of Glaucoma, 2020, 29, 312-321.	1.6	110
72	Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects. Ophthalmology, 2016, 123, 2309-2317.	5.2	106

#	Article	IF	Citations
73	Reproducibility of Optical Coherence Tomography Angiography Macular and Optic Nerve Head Vascular Density in Glaucoma and Healthy Eyes. Journal of Glaucoma, 2017, 26, 851-859.	1.6	106
74	Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss. Ophthalmology, 2018, 125, 578-587.	5.2	106
75	Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps. Ophthalmology, 2020, 127, 346-356.	5.2	106
76	The mechanism of action of prostaglandins on uveoscleral outflow. Current Opinion in Ophthalmology, 2000, 11, 112-115.	2.9	106
77	Latanoprostene Bunod 0.024% versus Timolol Maleate 0.5% in Subjects with Open-Angle Glaucoma or Ocular Hypertension. Ophthalmology, 2016, 123, 965-973.	5.2	105
78	Identifying Glaucomatous Vision Loss with Visual-Function–Specific Perimetry in the Diagnostic Innovations in Glaucoma Study. , 2006, 47, 3381.		104
79	Is Neuroprotection a Viable Therapy for Glaucoma?. JAMA Ophthalmology, 1999, 117, 1540.	2.4	103
80	Assessment of Choroidal Thickness and Volume during the Water Drinking Test by Swept-Source Optical Coherence Tomography. Ophthalmology, 2013, 120, 2508-2516.	5.2	102
81	Primary cilia signaling mediates intraocular pressure sensation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12871-12876.	7.1	102
82	Combining Structural and Functional Measurements to Improve Detection of Glaucoma Progression using Bayesian Hierarchical Models., 2011, 52, 5794.		101
83	Retinal Nerve Fiber Layer Imaging with Spectral-Domain Optical Coherence Tomography. Ophthalmology, 2010, 117, 267-274.	5.2	99
84	Structure-function Relationships Using the Cirrus Spectral Domain Optical Coherence Tomograph and Standard Automated Perimetry. Journal of Glaucoma, 2012, 21, 49-54.	1.6	99
85	Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma. Journal of Glaucoma, 2018, 27, 481-489.	1.6	98
86	Structure and function evaluation (SAFE): II. comparison of optic disk and visual field characteristics. American Journal of Ophthalmology, 2003, 135, 148-154.	3.3	97
87	Comparing the Rates of Retinal Nerve Fiber Layer and Ganglion Cell–Inner Plexiform Layer Loss in Healthy Eyes and in Glaucoma Eyes. American Journal of Ophthalmology, 2017, 178, 38-50.	3.3	97
88	Oral Memantine for the Treatment of Glaucoma. Ophthalmology, 2018, 125, 1874-1885.	5.2	97
89	The Relationship Between Structural and Functional Alterations in Glaucoma: A Review. Seminars in Ophthalmology, 2000, 15, 221-233.	1.6	96
90	Racial Differences in Optic Disc Topography. JAMA Ophthalmology, 2004, 122, 22.	2.4	95

#	Article	IF	CITATIONS
91	Evaluation of Retinal and Choroidal Thickness by Swept-Source Optical Coherence Tomography: Repeatability and Assessment of Artifacts. American Journal of Ophthalmology, 2014, 157, 1022-1032.e3.	3.3	94
92	Differentiation of Parapapillary Atrophy Using Spectral-Domain Optical Coherence Tomography. Ophthalmology, 2013, 120, 1790-1797.	5.2	93
93	African Descent and Glaucoma Evaluation Study (ADAGES). JAMA Ophthalmology, 2010, 128, 551.	2.4	92
94	A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS ONE, 2017, 12, e0173930.	2.5	92
95	Change in Optic Disk Topography After Trabeculectomy. American Journal of Ophthalmology, 1996, 122, 690-695.	3.3	91
96	Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers. , 2004, 45, 3144.		91
97	Association of CAV1/CAV2 Genomic Variants with Primary Open-Angle Glaucoma Overall and by Gender and Pattern of Visual Field Loss. Ophthalmology, 2014, 121, 508-516.	5.2	91
98	Role of Optic Nerve Imaging in Glaucoma Clinical Practice and Clinical Trials. American Journal of Ophthalmology, 2008, 145, 598-603.e1.	3.3	90
99	The Relationship between Intraocular Pressure and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology, 2009, 116, 1125-1133.e3.	5. 2	90
100	Defects of the Lamina Cribrosa in Eyes with Localized Retinal Nerve Fiber Layer Loss. Ophthalmology, 2014, 121, 110-118.	5.2	90
101	Determinants of Peripapillary and Macular Vessel Densities Measured by Optical Coherence Tomography Angiography in Normal Eyes. Journal of Glaucoma, 2017, 26, 491-497.	1.6	90
102	Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process. Nature Communications, 2014, 5, 4883.	12.8	89
103	Macula Vessel Density and Thickness in Early Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 2019, 199, 120-132.	3.3	87
104	Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression., 2018, 59, 2748.		86
105	Comparison of Latanoprostene Bunod 0.024% and Timolol Maleate 0.5% in Open-Angle Glaucoma or Ocular Hypertension: The LUNAR Study. American Journal of Ophthalmology, 2016, 168, 250-259.	3.3	85
106	Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation., 2009, 50, 1675.		84
107	Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis. , 2010, 51, 4104.		84
108	The Relationship between Intraocular Pressure Reduction and Rates of Progressive Visual Field Loss in Eyes with Optic Disc Hemorrhage. Ophthalmology, 2010, 117, 2061-2066.	5.2	83

#	Article	IF	CITATIONS
109	Ethnic Differences in Optic Nerve Head Topography. Journal of Glaucoma, 1995, 4, 248???257.	1.6	81
110	Indocyanine Green Angiography of the Peripapillary Region in Glaucomatous Eyes by Confocal Scanning Laser Ophthalmoscopy. American Journal of Ophthalmology, 1997, 123, 657-666.	3.3	81
111	Effect of image quality on tissue thickness measurements obtained with spectral domain-optical coherence tomography. Optics Express, 2009, 17, 4019.	3.4	81
112	Vessel Density and Structural Measurements of Optical Coherence Tomography in Primary Angle Closure and Primary Angle Closure Glaucoma. American Journal of Ophthalmology, 2017, 177, 106-115.	3.3	81
113	Structure-Function Relationship in Glaucoma Using Spectral-Domain Optical Coherence Tomography. JAMA Ophthalmology, 2011, 129, 864.	2.4	79
114	Association Between Progressive Retinal Nerve Fiber Layer Loss and Longitudinal Change in Quality of Life in Glaucoma. JAMA Ophthalmology, 2015, 133, 384.	2.5	79
115	Structural Change Can Be Detected in Advanced-Glaucoma Eyes. , 2016, 57, OCT511.		79
116	Conjunctival and Intrascleral Vasculatures Assessed Using Anterior Segment Optical Coherence Tomography Angiography in Normal Eyes. American Journal of Ophthalmology, 2018, 196, 1-9.	3.3	79
117	Quantitative assessment of the optic nerve head with the laser tomographic scanner. International Ophthalmology, 1989, 13, 25-29.	1.4	78
118	Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy. American Journal of Ophthalmology, 1998, 125, 436-446.	3.3	77
119	Ganglion Cell Complex Thickness and Macular Vessel Density Loss in Primary Open-Angle Glaucoma. Ophthalmology, 2020, 127, 1043-1052.	5.2	77
120	Short-Term Repeatability of Diurnal Intraocular Pressure Patterns in Glaucomatous Individuals. Ophthalmology, 2011, 118, 47-51.	5.2	76
121	CDKN2B-AS1 Genotype–Glaucoma Feature Correlations in Primary Open-Angle Glaucoma Patients From the United States. American Journal of Ophthalmology, 2013, 155, 342-353.e5.	3.3	76
122	Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements., 2005, 46, 1322.		75
123	Effect of Signal Strength and Improper Alignment on the Variability of Stratus Optical Coherence Tomography Retinal Nerve Fiber Layer Thickness Measurements. American Journal of Ophthalmology, 2009, 148, 249-255.e1.	3.3	75
124	Aqueous Angiography: Aqueous Humor Outflow Imaging in Live Human Subjects. Ophthalmology, 2017, 124, 1249-1251.	5.2	75
125	Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Investigative Ophthalmology and Visual Science, 2002, 43, 162-9.	3.3	75
126	Rates of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Measured by Scanning Laser Polarimetry. American Journal of Ophthalmology, 2010, 149, 908-915.	3.3	73

#	Article	IF	CITATIONS
127	Recent Structural Alteration of the Peripheral Lamina Cribrosa Near the Location of Disc Hemorrhage in Glaucoma., 2014, 55, 2805.		73
128	Matrix Metalloproteinases and Glaucoma Treatment. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 208-228.	1.4	70
129	Efficacy of a Contact Lens Sensor for Monitoring 24-H Intraocular Pressure Related Patterns. PLoS ONE, 2015, 10, e0125530.	2.5	69
130	Diurnal Intraocular Pressure Patterns are Not Repeatable in the Short Term in Healthy Individuals. Ophthalmology, 2010, 117, 1700-1704.	5.2	68
131	Diagnostic Ability of Macular Ganglion Cell Inner Plexiform Layer Measurements in Glaucoma Using Swept Source and Spectral Domain Optical Coherence Tomography. PLoS ONE, 2015, 10, e0125957.	2.5	68
132	Aqueous Angiography in Living Nonhuman Primates Shows Segmental, Pulsatile, and Dynamic Angiographic Aqueous Humor Outflow. Ophthalmology, 2017, 124, 793-803.	5 . 2	68
133	A Comparison of Rates of Change in Neuroretinal Rim Area and Retinal Nerve Fiber Layer Thickness in Progressive Glaucoma., 2010, 51, 3531.		67
134	Diagnostic Ability of Retinal Nerve Fiber Layer Imaging byÂSwept-Source Optical Coherence Tomography inÂGlaucoma. American Journal of Ophthalmology, 2015, 159, 193-201.	3.3	67
135	Bayesian Machine Learning Classifiers for Combining Structural and Functional Measurements to Classify Healthy and Glaucomatous Eyes., 2008, 49, 945.		66
136	Comparing Diurnal and Nocturnal Effects of Brinzolamide and Timolol on Intraocular Pressure in Patients Receiving Latanoprost Monotherapy. Ophthalmology, 2009, 116, 449-454.	5.2	66
137	P16INK4a Upregulation Mediated by SIX6 Defines Retinal Ganglion Cell Pathogenesis in Glaucoma. Molecular Cell, 2015, 59, 931-940.	9.7	66
138	Assessment of Choroidal Thickness in Healthy and Glaucomatous Eyes Using Swept Source Optical Coherence Tomography. PLoS ONE, 2014, 9, e109683.	2.5	65
139	Long-term Safety and Efficacy of Latanoprostene Bunod 0.024% in Japanese Subjects with Open-Angle Glaucoma or Ocular Hypertension: The JUPITER Study. Advances in Therapy, 2016, 33, 1612-1627.	2.9	65
140	Differences in Visual Function and Optic Nerve Structure Between Healthy Eyes of Blacks and Whites. JAMA Ophthalmology, 2005, 123, 1547.	2.4	64
141	Diurnal and Nocturnal Effects of Brimonidine Monotherapy on Intraocular Pressure. Ophthalmology, 2010, 117, 2075-2079.	5. 2	64
142	24-h monitoring devices and nyctohemeral rhythms of intraocular pressure. Progress in Retinal and Eye Research, 2016, 55, 108-148.	15.5	64
143	Dynamic Analysis of Iris Configuration with Anterior Segment Optical Coherence Tomography. , 2010, 51, 4040.		63
144	Relationship between Ganglion Cell Layer Thickness and Estimated Retinal Ganglion Cell Counts in the Glaucomatous Macula. Ophthalmology, 2014, 121, 2371-2379.	5.2	62

#	Article	IF	CITATIONS
145	Phase 3, Randomized, 20-Month Study ofÂBimatoprost Implant in Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 1). Ophthalmology, 2020, 127, 1627-1641.	5.2	62
146	Prostaglandin FP Agonists Alter Metalloproteinase Gene Expression in Sclera., 2004, 45, 4368.		61
147	The Importance of Models in Glaucoma Research. Journal of Glaucoma, 2005, 14, 302-304.	1.6	61
148	Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Canadian Journal of Ophthalmology, 2008, 43, 302-307.	0.7	61
149	Corneal Hysteresis and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. American Journal of Ophthalmology, 2016, 166, 29-36.	3.3	61
150	Parapapillary Deep-Layer Microvasculature Dropout and Visual Field Progression in Glaucoma. American Journal of Ophthalmology, 2019, 200, 65-75.	3.3	61
151	The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma. , 2016, 57, OCT421.		60
152	Aqueous Angiographic Outflow Improvement after Trabecular Microbypass in Glaucoma Patients. Ophthalmology Glaucoma, 2019, 2, 11-21.	1.9	60
153	Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma. Journal of Glaucoma, 2017, 26, 548-554.	1.6	60
154	Effect of Laser Trabeculoplasty on Nocturnal Intraocular Pressure in Medically Treated Glaucoma Patients. Ophthalmology, 2007, 114, 666-670.	5.2	59
155	Aqueous Angiography–Mediated Guidance of Trabecular Bypass Improves Angiographic Outflow in Human Enucleated Eyes. , 2016, 57, 4558.		59
156	Mitochondrial pathogenic mechanism and degradation in optineurin E50K mutation-mediated retinal ganglion cell degeneration. Scientific Reports, 2016, 6, 33830.	3.3	59
157	Latanoprostene Bunod 0.024% in Subjects With Open-angle Glaucoma or Ocular Hypertension: Pooled Phase 3 Study Findings. Journal of Glaucoma, 2018, 27, 7-15.	1.6	59
158	Fluorescein Aqueous Angiography in Live Normal Human Eyes. Journal of Glaucoma, 2018, 27, 957-964.	1.6	59
159	Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Investigative Ophthalmology and Visual Science, 2002, 43, 3444-54.	3.3	59
160	Sustained Effect of Travoprost on Diurnal and Nocturnal Intraocular Pressure. American Journal of Ophthalmology, 2006, 141, 1131-1133.	3.3	58
161	Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging. PLoS ONE, 2016, 11, e0147176.	2.5	58
162	Regional Optic Nerve Damage in Experimental Mouse Glaucoma. , 2004, 45, 4352.		57

#	Article	IF	CITATIONS
163	Efficacy of Latanoprostene Bunod 0.024% Compared With Timolol 0.5% in Lowering Intraocular Pressure Over 24 Hours. American Journal of Ophthalmology, 2016, 169, 249-257.	3.3	57
164	Asymmetry of Right versus Left Intraocular Pressures over 24 Hours in Glaucoma Patients. Ophthalmology, 2006, 113, 425-430.	5.2	56
165	Strategies for improving early detection of glaucoma: the combined structure–function index. Clinical Ophthalmology, 2014, 8, 611.	1.8	56
166	Optic Nerve Head Deformation in Glaucoma. Ophthalmology, 2015, 122, 1317-1329.	5.2	56
167	Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glaucoma Suspect, and Healthy Eyes. American Journal of Ophthalmology, 2018, 190, 69-77.	3.3	56
168	The NEIGHBOR Consortium Primary Open-Angle Glaucoma Genome-wide Association Study. Journal of Glaucoma, 2013, 22, 517-525.	1.6	55
169	Predicting the Onset of Glaucoma. Ophthalmology, 2010, 117, 1674-1683.	5.2	54
170	Twenty-Four–Hour Pattern of Intraocular Pressure in Untreated Patients with Ocular Hypertension. , 2013, 54, 512.		54
171	What rates of glaucoma progression are clinically significant?. Expert Review of Ophthalmology, 2016, 11, 227-234.	0.6	54
172	Optic disk topography after medical treatment to reduce intraocular pressure. American Journal of Ophthalmology, 2000, 130, 280-286.	3.3	53
173	Genome-Wide Analysis of Central Corneal Thickness in Primary Open-Angle Glaucoma Cases in the NEIGHBOR and GLAUGEN Consortia., 2012, 53, 4468.		52
174	Optic Nerve Head Deformation in Glaucoma. Ophthalmology, 2014, 121, 2362-2370.	5.2	52
175	Autotaxin–Lysophosphatidic Acid Pathway in Intraocular Pressure Regulation and Glaucoma Subtypes. , 2018, 59, 693.		52
176	Anterior Lamina Cribrosa Insertion in Primary Open-Angle Glaucoma Patients and Healthy Subjects. PLoS ONE, 2014, 9, e114935.	2.5	52
177	Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma. American Journal of Ophthalmology, 2019, 204, 51-61.	3.3	51
178	Association of Genetic Variants With Primary Open-Angle Glaucoma Among Individuals With African Ancestry. JAMA - Journal of the American Medical Association, 2019, 322, 1682.	7.4	50
179	Evaluation of Progressive Neuroretinal Rim Loss as a Surrogate End Point for Development of Visual Field Loss in Glaucoma. Ophthalmology, 2014, 121, 100-109.	5.2	49
180	Management of advanced glaucoma: Characterization and monitoring. Survey of Ophthalmology, 2016, 61, 597-615.	4.0	49

#	Article	IF	Citations
181	Improved Prediction of Rates of Visual Field Loss in Glaucoma Using Empirical Bayes Estimates of Slopes of Change. Journal of Glaucoma, 2012, 21, 147-154.	1.6	46
182	Protection of injured retinal ganglion cell dendrites and unfolded protein response resolution after long-term dietary resveratrol. Neurobiology of Aging, 2015, 36, 1969-1981.	3.1	46
183	Early removal of senescent cells protects retinal ganglion cells loss in experimental ocular hypertension. Aging Cell, 2020, 19, e13089.	6.7	45
184	Common variants on chromosome 2 and risk of primary open-angle glaucoma in the Afro-Caribbean population of Barbados. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17105-17110.	7.1	44
185	Structural and functional imaging of aqueous humour outflow: a review. Clinical and Experimental Ophthalmology, 2018, 46, 158-168.	2.6	44
186	Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA)., 2016, 57, 675.		43
187	A Common Variant in <i>MIR182</i> Is Associated With Primary Open-Angle Glaucoma in the NEIGHBORHOOD Consortium., 2016, 57, 4528.		42
188	The Association Between Macula and ONH Optical Coherence Tomography Angiography (OCT-A) Vessel Densities in Glaucoma, Glaucoma Suspect, and Healthy Eyes. Journal of Glaucoma, 2018, 27, 227-232.	1.6	42
189	The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects. American Journal of Ophthalmology, 2015, 159, 777-787.e1.	3.3	41
190	Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent. JAMA Ophthalmology, 2018, 136, 329.	2.5	41
191	Anterior Chamber Angle Assessment Techniques: A Review. Journal of Clinical Medicine, 2020, 9, 3814.	2.4	41
192	Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations. Human Genetics, 2018, 137, 847-862.	3.8	40
193	Performance of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma. American Journal of Ophthalmology, 2018, 196, 10-17.	3.3	40
194	Genetic Architecture of Primary Open-Angle Glaucoma in Individuals of African Descent. Ophthalmology, 2019, 126, 38-48.	5.2	40
195	OCT Angiography Artifacts in Glaucoma. Ophthalmology, 2021, 128, 1426-1437.	5.2	40
196	Strategies to improve early diagnosis in glaucoma. Progress in Brain Research, 2015, 221, 103-133.	1.4	39
197	Accuracy of the Heidelberg Spectralis in the Alignment Between Near-Infrared Image and Tomographic Scan in a Model Eye: A Multicenter Study. American Journal of Ophthalmology, 2013, 156, 588-592.	3.3	38
198	Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography. Ophthalmology, 2016, 123, 2058-2065.	5.2	38

#	Article	IF	CITATIONS
199	Translaminar pressure in Caucasian normal tension glaucoma patients. Acta Ophthalmologica, 2017, 95, e524-e531.	1.1	38
200	Estimated Retinal Ganglion Cell Counts in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects. American Journal of Ophthalmology, 2013, 156, 578-587.e1.	3.3	37
201	Aqueous Angiography with Fluorescein and Indocyanine Green in Bovine Eyes. Translational Vision Science and Technology, 2016, 5, 5.	2.2	37
202	Diurnal Variations of Peripapillary and Macular Vessel Density in Glaucomatous Eyes Using Optical Coherence Tomography Angiography. Journal of Glaucoma, 2018, 27, 336-341.	1.6	37
203	Rates of Local Retinal Nerve Fiber Layer Thinning before and after Disc Hemorrhage in Glaucoma. Ophthalmology, 2017, 124, 1403-1411.	5.2	36
204	Visual field loss and vision-related quality of life in the Italian Primary Open Angle Glaucoma Study. Scientific Reports, 2018, 8, 619.	3.3	36
205	Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers. PLoS ONE, 2014, 9, e85941.	2.5	36
206	Transport-mediated release of endogenous glutamate in the vertebrate retina. Pflugers Archiv European Journal of Physiology, 1998, 436, 481-484.	2.8	35
207	Evaluation of the Effect of Latanoprostene Bunod Ophthalmic Solution, 0.024% in Lowering Intraocular Pressure over 24Âh in Healthy Japanese Subjects. Advances in Therapy, 2015, 32, 1128-1139.	2.9	35
208	Rates of Retinal Nerve Fiber Layer Loss inÂContralateral Eyes of Glaucoma Patients with Unilateral Progression by Conventional Methods. Ophthalmology, 2015, 122, 2243-2251.	5.2	35
209	Effects of Study Population, Labeling and Training on Glaucoma Detection Using Deep Learning Algorithms. Translational Vision Science and Technology, 2020, 9, 27.	2.2	35
210	Integrating Event- and Trend-Based Analyses to Improve Detection of Glaucomatous Visual Field Progression. Ophthalmology, 2012, 119, 458-467.	5.2	34
211	Detecting Glaucoma Using Automated Pupillography. Ophthalmology, 2014, 121, 1185-1193.	5.2	34
212	Machine Learning-Based Predictive Modeling of Surgical Intervention in Glaucoma Using Systemic Data From Electronic Health Records. American Journal of Ophthalmology, 2019, 208, 30-40.	3.3	34
213	African Descent and Glaucoma Evaluation Study (ADAGES). Ophthalmology, 2016, 123, 1476-1483.	5.2	33
214	New Recommendations for the Treatment of Systemic Hypertension and their Potential Implications for Glaucoma Management. Journal of Glaucoma, 2018, 27, 567-571.	1.6	33
215	Review of the measurement and management of 24-hour intraocular pressure in patients with glaucoma. Survey of Ophthalmology, 2020, 65, 171-186.	4.0	33
216	Estimated Rates of Retinal Ganglion Cell Loss in Glaucomatous Eyes with and without Optic Disc Hemorrhages. PLoS ONE, 2014, 9, e105611.	2.5	32

#	Article	IF	CITATIONS
217	Effect of glaucoma medications on 24â€hour intraocular pressureâ€related patterns using a contact lens sensor. Clinical and Experimental Ophthalmology, 2015, 43, 787-795.	2.6	32
218	Automated circumferential construction of first-order aqueous humor outflow pathways using spectral-domain optical coherence tomography. Journal of Biomedical Optics, 2017, 22, 066010.	2.6	32
219	Lamina Cribrosa Morphology Predicts Progressive Retinal Nerve Fiber Layer Loss In Eyes with Suspected Glaucoma. Scientific Reports, 2018, 8, 738.	3.3	32
220	Association of a Primary Open-Angle Glaucoma Genetic Risk Score With Earlier Age at Diagnosis. JAMA Ophthalmology, 2019, 137, 1190.	2.5	32
221	Asymmetric Patterns of Visual Field Defect in Primary Open-Angle and Primary Angle-Closure Glaucoma., 2018, 59, 1279.		31
222	Choroidal Microvascular Dropout in Primary Open-angle Glaucoma Eyes With Disc Hemorrhage. Journal of Glaucoma, 2019, 28, 181-187.	1.6	31
223	Repeatability and Reproducibility of Corneal Epithelial Thickness Mapping With Spectral-Domain Optical Coherence Tomography in Normal and Diseased Cornea Eyes. American Journal of Ophthalmology, 2019, 197, 88-97.	3.3	31
224	Evaluating the Optic Disc and Retinal Nerve Fiber Layer in Glaucoma II: Optical Image Analysis. Seminars in Ophthalmology, 2000, 15, 206-220.	1.6	30
225	Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients. American Journal of Ophthalmology, 2018, 189, 1-9.	3.3	30
226	Evaluating the Optic Disc and Retinal Nerve Fiber Layer in Glaucoma I: Clinical Examination and Photographic Methods. Seminars in Ophthalmology, 2000, 15, 194-205.	1.6	29
227	Ocular blood flow in glaucoma. Canadian Journal of Ophthalmology, 2008, 43, 281-283.	0.7	29
228	Diagnostic Accuracy of the Spectralis and Cirrus Reference Databases in Differentiating between Healthy and Early Glaucoma Eyes. Ophthalmology, 2016, 123, 408-414.	5.2	29
229	Deep-Layer Microvasculature Dropout by Optical Coherence Tomography Angiography and Microstructure of Parapapillary Atrophy. , 2018, 59, 1996.		29
230	Estimation of 24-Hour Intraocular Pressure Peak Timing and Variation Using a Contact Lens Sensor. PLoS ONE, 2015, 10, e0129529.	2.5	29
231	Long-term Variability of GDx VCC Retinal Nerve Fiber Layer Thickness Measurements. Journal of Glaucoma, 2007, 16, 277-281.	1.6	28
232	Racial Differences in Rate of Change of Spectral-Domain Optical Coherence Tomography–Measured Minimum Rim Width and Retinal Nerve Fiber Layer Thickness. American Journal of Ophthalmology, 2018, 196, 154-164.	3.3	28
233	Choroidal Microvascular Dropout in Primary Angle Closure Glaucoma. American Journal of Ophthalmology, 2019, 199, 184-192.	3.3	28
234	Current Practice with Standard Automated Perimetry. Seminars in Ophthalmology, 2000, 15, 172-181.	1.6	27

#	Article	IF	CITATION
235	Retinal Nerve Fiber Layer Progression in Glaucoma. Ophthalmology, 2013, 120, 2493-2500.	5.2	27
236	DNA Copy Number Variants of Known Glaucoma Genes in Relation to Primary Open-Angle Glaucoma. Investigative Ophthalmology and Visual Science, 2014, 55, 8251-8258.	3.3	27
237	Tissue Distribution of <i>trans</i> -Resveratrol and Its Metabolites after Oral Administration in Human Eyes. Journal of Ophthalmology, 2017, 2017, 1-12.	1.3	27
238	Repeatability and comparability of peripapillary vessel density measurements of high-density and non-high-density optical coherence tomography angiography scans in normal and glaucoma eyes. British Journal of Ophthalmology, 2019, 103, 949-954.	3.9	27
239	Changes in Optic Nerve Head Vessel Density After Acute Primary Angle Closure Episode. , 2019, 60, 552.		27
240	Predicting Progression of Glaucoma from Rates of Frequency Doubling Technology Perimetry Change. Ophthalmology, 2014, 121, 498-507.	5.2	26
241	Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography. PLoS ONE, 2018, 13, e0201729.	2.5	26
242	Racial and Ethnic Disparities in Cost-Related Barriers to Medication Adherence Among Patients With Glaucoma Enrolled in the National Institutes of Health <i>All of Us</i> Research Program. JAMA Ophthalmology, 2022, 140, 354.	2.5	26
243	Frequency-Doubling Technology Perimetry for Detection of the Development of Visual Field Defects in Glaucoma Suspect Eyes. JAMA Ophthalmology, 2014, 132, 77.	2.5	25
244	Diagnostic Ability of Optical Coherence Tomography Angiography Macula Vessel Density for the Diagnosis of Glaucoma Using Difference Scan Sizes. Journal of Glaucoma, 2020, 29, 245-251.	1.6	25
245	Loss of AKAP1 triggers Drp1 dephosphorylation-mediated mitochondrial fission and loss in retinal ganglion cells. Cell Death and Disease, 2020, 11, 254.	6.3	25
246	Combining Functional and Structural Tests Improves the Diagnostic Accuracy of Relevance Vector Machine Classifiers. Journal of Glaucoma, 2010, 19, 167-175.	1.6	24
247	Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression. Artificial Intelligence in Medicine, 2015, 64, 105-115.	6.5	24
248	Bone marrow-derived cells in ocular neovascularization: contribution and mechanisms. Angiogenesis, 2016, 19, 107-118.	7.2	24
249	Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss. American Journal of Ophthalmology, 2018, 187, 92-98.	3.3	24
250	Lamina Cribrosa and Choroid Features and Their Relationship to Stage of Pseudoexfoliation Glaucoma., 2018, 59, 5355.		24
251	Classification of primary angle closure spectrum with hierarchical cluster analysis. PLoS ONE, 2018, 13, e0199157.	2.5	24
252	Use of Virtual Reality Simulation to Identify Vision-Related Disability in Patients With Glaucoma. JAMA Ophthalmology, 2020, 138, 490.	2.5	24

#	Article	IF	CITATIONS
253	Deep Learning Image Analysis of Optical Coherence Tomography Angiography Measured Vessel Density Improves Classification of Healthy and Glaucoma Eyes. American Journal of Ophthalmology, 2022, 236, 298-308.	3.3	24
254	Diagnostic Abilities of the Optical Microangiography Parameters of the 3×3 mm and 6×6 mm Macula Scans in Glaucoma. Journal of Glaucoma, 2018, 27, 496-503.	r _{1.6}	23
255	Use of Machine Learning on Contact Lens Sensor–Derived Parameters for the Diagnosis of Primary Open-angle Glaucoma. American Journal of Ophthalmology, 2018, 194, 46-53.	3.3	23
256	Comparing 10-2 and 24-2 Visual Fields forÂDetecting Progressive Central Visual LossÂinÂGlaucoma Eyes with Early CentralÂAbnormalities. Ophthalmology Glaucoma, 2019, 2, 95-102.	1.9	23
257	Episcleral Venous Pressure and the Ocular Hypotensive Effects of Topical and Intracameral Prostaglandin Analogs. Journal of Glaucoma, 2019, 28, 846-857.	1.6	23
258	Gradient-Boosting Classifiers Combining Vessel Density and Tissue Thickness Measurements for Classifying Early to Moderate Glaucoma. American Journal of Ophthalmology, 2020, 217, 131-139.	3.3	23
259	Quantitative Trait Locus Analysis of SIX1-SIX6 With Retinal Nerve Fiber Layer Thickness in Individuals of European Descent. American Journal of Ophthalmology, 2015, 160, 123-130.e1.	3.3	22
260	Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage. Journal of Glaucoma, 2017, 26, 888-895.	1.6	22
261	Will Perimetry Be Performed to Monitor Glaucoma in 2025?. Ophthalmology, 2017, 124, S71-S75.	5.2	22
262	Angle stability and outflow in dual blade ab interno trabeculectomy with active versus passive chamber management. PLoS ONE, 2017, 12, e0177238.	2.5	22
263	Association of fasting insulin and C peptide with diabetic retinopathy in Latinos with type 2 diabetes. BMJ Open Diabetes Research and Care, 2014, 2, e000027.	2.8	21
264	A hierarchical framework for estimating neuroretinal rim area using 3D spectral domain optical coherence tomography (SD-OCT) optic nerve head (ONH) images of healthy and glaucoma eyes., 2014, 2014, 3869-72.		21
265	AIBP protects retinal ganglion cells against neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration. Redox Biology, 2020, 37, 101703.	9.0	21
266	The influence of axial myopia on optic disc characteristics of glaucoma eyes. Scientific Reports, 2021, 11, 8854.	3.3	21
267	Glaucomatous Retinal Nerve Fiber Layer Thickness Loss Is Associated With Slower Reaction Times Under a Divided Attention Task. American Journal of Ophthalmology, 2014, 158, 1008-1017.e2.	3.3	20
268	Automated Detection and Quantification of Circadian Eye Blinks Using a Contact Lens Sensor. Translational Vision Science and Technology, 2015, 4, 4.	2.2	20
269	Time Spent in Lateral Sleep Position and Asymmetry in Glaucoma. , 2015, 56, 3869.		20
270	Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes. Cell Death and Disease, 2018, 9, 285.	6.3	20

#	Article	IF	CITATIONS
271	A Longitudinal Analysis of Peripapillary Choroidal Thinning in Healthy and Glaucoma Subjects. American Journal of Ophthalmology, 2018, 186, 89-95.	3.3	20
272	MicroRNA-19a-PTEN Axis Is Involved in the Developmental Decline of Axon Regenerative Capacity in Retinal Ganglion Cells. Molecular Therapy - Nucleic Acids, 2020, 21, 251-263.	5.1	20
273	Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT. Ophthalmology, 2021, 128, 1534-1548.	5.2	20
274	Measurements of the parapapillary atrophy zones in en face optical coherence tomography images. PLoS ONE, 2017, 12, e0175347.	2.5	20
275	Relationship of the 24-Hour Pattern of Intraocular Pressure with Optic Disc Appearance in Primary Open-Angle Glaucoma. Ophthalmology, 2009, 116, 833-839.	5.2	19
276	Biogeographic Ancestry in the African Descent and Glaucoma Evaluation Study (ADAGES): Association With Corneal and Optic Nerve Structure., 2015, 56, 2043.		19
277	Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes. American Journal of Ophthalmology, 2018, 191, 140-148.	3.3	19
278	Ubiquinol promotes retinal ganglion cell survival and blocks the apoptotic pathway in ischemic retinal degeneration. Biochemical and Biophysical Research Communications, 2018, 503, 2639-2645.	2.1	19
279	Association of Corneal Hysteresis With Lamina Cribrosa Curvature in Primary Open Angle Glaucoma. , 2019, 60, 4171.		19
280	A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis. Npj Digital Medicine, 2021, 4, 48.	10.9	19
281	Inhibition of GCK-IV kinases dissociates cell death and axon regeneration in CNS neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33597-33607.	7.1	19
282	Direct Matrix Metalloproteinase Enhancement of Transscleral Permeability., 2007, 48, 752.		18
283	Asymmetry of Habitual 24-Hour Intraocular Pressure Rhythm in Glaucoma Patients., 2014, 55, 7398.		18
284	Detecting glaucomatous change in visual fields: Analysis with an optimization framework. Journal of Biomedical Informatics, 2015, 58, 96-103.	4.3	18
285	Genetic correlations between intraocular pressure, blood pressure and primary open-angle glaucoma: a multi-cohort analysis. European Journal of Human Genetics, 2017, 25, 1261-1267.	2.8	18
286	Anterior Segment Dimensions Following Laser Iridotomy in Acute Primary Angle Closure and Fellow Eyes. American Journal of Ophthalmology, 2018, 186, 59-68.	3.3	18
287	Choroidal Microvascular Dropout in Pseudoexfoliation Glaucoma. , 2019, 60, 2146.		18
288	Inhibition of cAMP/PKA Pathway Protects Optic Nerve Head Astrocytes against Oxidative Stress by Akt/Bax Phosphorylation-Mediated Mfn1/2 Oligomerization. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	4.0	18

#	Article	IF	CITATIONS
289	Weekly and seasonal changes of intraocular pressure measured with an implanted intraocular telemetry sensor. British Journal of Ophthalmology, 2021, 105, 387-391.	3.9	18
290	Twenty-four-hour effects of bimatoprost 0.01% monotherapy on intraocular pressure and ocular perfusion pressure. BMJ Open, 2012, 2, e001106.	1.9	17
291	Frequency Doubling Technology Perimetry and Changes in Quality of Life of Glaucoma Patients: A Longitudinal Study. American Journal of Ophthalmology, 2015, 160, 114-122.e1.	3.3	17
292	Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes. Ophthalmology, 2016, 123, 760-770.	5.2	17
293	Animal Models of Proliferative Vitreoretinopathy and Their Use in Pharmaceutical Investigations. Ophthalmic Research, 2018, 60, 195-204.	1.9	17
294	Relationship of Corneal Hysteresis and Anterior Lamina Cribrosa Displacement in Glaucoma. American Journal of Ophthalmology, 2020, 212, 134-143.	3.3	17
295	OCT angiography measured changes in the foveal avascular zone area after glaucoma surgery. British Journal of Ophthalmology, 2022, 106, 80-86.	3.9	17
296	Geometric Perfusion Deficits: A Novel OCT Angiography Biomarker for Diabetic Retinopathy Based on Oxygen Diffusion. American Journal of Ophthalmology, 2021, 222, 256-270.	3.3	17
297	Superficial and Deep Macula Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Journal of Glaucoma, 2021, 30, e276-e284.	1.6	17
298	Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects. PLoS ONE, 2016, 11, e0160549.	2.5	17
299	Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis. American Journal of Ophthalmology, 2022, 237, 1-12.	3.3	17
300	Impact of Smoking on Visual Field Progression in a Long-term Clinical Follow-up. Ophthalmology, 2022, 129, 1235-1244.	5.2	17
301	Ageâ€related changes in the human lens. Acta Ophthalmologica, 1991, 69, 310-314.	1.1	16
302	Differential Protection of Injured Retinal Ganglion Cell Dendrites by Brimonidine. Investigative Ophthalmology and Visual Science, 2015, 56, 1789-1804.	3.3	16
303		2.5	16
304	Optical Coherence Tomography Angiography and Glaucoma: A Brief Review. Asia-Pacific Journal of Ophthalmology, 2019, 8, .	2.5	16
305	A Randomized Controlled Trial Comparing Subconjunctival Injection to Direct Scleral Application of Mitomycin C in Trabeculectomy. American Journal of Ophthalmology, 2020, 220, 45-52.	3.3	16
306	Association of Initial Optical Coherence Tomography Angiography Vessel Density Loss With Faster Visual Field Loss in Glaucoma. JAMA Ophthalmology, 2022, 140, 319.	2.5	16

#	Article	IF	Citations
307	Diagnostic Ability and Structure-function Relationship of Peripapillary Optical Microangiography Measurements in Glaucoma. Journal of Glaucoma, 2018, 27, 219-226.	1.6	15
308	Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns., 2018, 59, 5717.		15
309	24-Hour Intraocular Pressure Control with Fixed-dose Combination Brinzolamide 1%/Brimonidine 0.2%. Ophthalmology, 2019, 126, 1095-1104.	5.2	15
310	Vision-related quality of life and symptom perception change over time in newly-diagnosed primary open angle glaucoma patients. Scientific Reports, 2019, 9, 6735.	3.3	15
311	Dynamic Scheimpflug Ocular Biomechanical Parameters in Healthy and Medically Controlled Glaucoma Eyes. Journal of Glaucoma, 2019, 28, 588-592.	1.6	15
312	Disc Hemorrhages Are Associated With the Presence and Progression of Glaucomatous Central Visual Field Defects. Journal of Glaucoma, 2020, 29, 429-434.	1.6	15
313	The effect of daily life activities on intraocular pressure related variations in open-angle glaucoma. Scientific Reports, 2021, 11, 6598.	3.3	15
314	Finite element analysis of trans-lamina cribrosa pressure difference on optic nerve head biomechanics: the Beijing Intracranial and Intraocular Pressure Study. Science China Life Sciences, 2020, 63, 1887-1894.	4.9	15
315	Detecting Glaucoma in the Ocular Hypertension Study Using Deep Learning. JAMA Ophthalmology, 2022, 140, 383.	2.5	15
316	The Loss of Visual Function in Glaucoma. Seminars in Ophthalmology, 2000, 15, 182-193.	1.6	14
317	The Glaucoma Italian Pediatric Study (GIPSy): 3-Year Results. Journal of Glaucoma, 2018, 27, 856-863.	1.6	14
318	Testosterone Pathway Genetic Polymorphisms in Relation to Primary Open-Angle Glaucoma: An Analysis in Two Large Datasets., 2018, 59, 629.		14
319	Intraocular Pressure Effects and Mechanism of Action of Topical Versus Sustained-Release Bimatoprost. Translational Vision Science and Technology, 2019, 8, 15.	2.2	14
320	Comparison of Fellow Eyes of Acute Primary Angle Closure and Phacomorphic Angle Closure. Journal of Glaucoma, 2019, 28, 194-200.	1.6	14
321	Vessel density and retinal nerve fibre layer thickness following acute primary angle closure. British Journal of Ophthalmology, 2020, 104, 1103-1108.	3.9	14
322	Evaluating the neuroprotective impact of senolytic drugs on human vision. Scientific Reports, 2020, 10, 21752.	3.3	14
323	Visual Field Artifacts in Glaucoma With Face Mask Use During the COVID-19 Pandemic. Journal of Glaucoma, 2020, 29, 1184-1188.	1.6	14
324	Deep-layer Microvasculature Dropout in Preperimetric Glaucoma Patients. Journal of Glaucoma, 2020, 29, 423-428.	1.6	14

#	Article	IF	CITATIONS
325	Imaging of the Lamina Cribrosa using Swept-Source Optical Coherence Tomography. Journal of Current Glaucoma Practice, 2012, 6, 113-119.	0.5	14
326	Classification of Visual Field Abnormalities in Highly Myopic Eyes without Pathologic Change. Ophthalmology, 2022, 129, 803-812.	5.2	14
327	Asymmetry of 24-Hour Intraocular Pressure Reduction by Topical Ocular Hypotensive Medications in Fellow Eyes. Ophthalmology, 2011, 118, 1995-2000.	5.2	13
328	Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)., 2019, 60, 4496.		13
329	The African Descent and Glaucoma Evaluation Study (ADAGES) III. Ophthalmology, 2019, 126, 156-170.	5.2	13
330	Short-Term and Long-Term Variability of Intraocular Pressure Measured with an Intraocular Telemetry Sensor in Patients with Glaucoma. Ophthalmology, 2021, 128, 227-233.	5.2	13
331	Optical Coherence Tomography Angiography and Visual Field Progression in Primary Angle Closure Glaucoma. Journal of Glaucoma, 2021, 30, e61-e67.	1.6	13
332	Diurnal Variation of Optical Coherence Tomography Measurements of Static and Dynamic Anterior Segment Parameters. Journal of Glaucoma, 2018, 27, 16-21.	1.6	12
333	Latanoprost with high precision, piezo-print microdose delivery for IOP lowering: clinical results of the PG21 study of 0.4 µg daily microdose. Clinical Ophthalmology, 2018, Volume 12, 2451-2457.	1.8	12
334	Association Between Lamina Cribrosa Defects and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. JAMA Ophthalmology, 2019, 137, 425.	2.5	12
335	Smart Electronic Eyedrop Bottle for Unobtrusive Monitoring of Glaucoma Medication Adherence. Sensors, 2020, 20, 2570.	3.8	12
336	Characteristics of Focal Gamma Zone Parapapillary Atrophy. , 2020, 61, 17.		12
337	Juxtapapillary Deep-Layer Microvasculature Dropout and Retinal Nerve Fiber Layer Thinning in Glaucoma. American Journal of Ophthalmology, 2021, 227, 154-165.	3.3	12
338	Measurements of OCT Angiography Complement OCT for Diagnosing Early Primary Open-Angle Glaucoma. Ophthalmology Glaucoma, 2022, 5, 262-274.	1.9	12
339	Multilayer Macula Vessel Density and Visual Field Progression in Glaucoma. American Journal of Ophthalmology, 2022, 237, 193-203.	3.3	12
340	Quantitative assessment of cynomolgus monkey trabecular cell phagocytosis and adsorption. Current Eye Research, 1988, 7, 445-448.	1.5	11
341	Localized Glaucomatous Change Detection within the Proper Orthogonal Decomposition Framework. , 2012, 53, 3615.		11
342	A unified framework for glaucoma progression detection using Heidelberg Retina Tomograph images. Computerized Medical Imaging and Graphics, 2014, 38, 411-420.	5.8	11

#	Article	IF	CITATIONS
343	Macular Pigment and Visual Function in Patients With Glaucoma: The San Diego Macular Pigment Study., 2018, 59, 4471.		11
344	Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm. American Journal of Ophthalmology, 2020, 216, 37-43.	3.3	11
345	Agreement Between 10-2 and 24-2C Visual Field Test Protocols for Detecting Glaucomatous Central Visual Field Defects. Journal of Glaucoma, 2021, 30, e285-e291.	1.6	11
346	Long-term reproducibility of optical coherence tomography angiography in healthy and stable glaucomatous eyes. British Journal of Ophthalmology, 2023, 107, 657-662.	3.9	11
347	Macular Vessel Density in Glaucomatous Eyes With Focal Lamina Cribrosa Defects. Journal of Glaucoma, 2018, 27, 342-349.	1.6	10
348	Optineurin E50K triggers BDNF deficiency-mediated mitochondrial dysfunction in retinal photoreceptor cell line. Biochemical and Biophysical Research Communications, 2018, 503, 2690-2697.	2.1	10
349	Individualized Glaucoma Change Detection Using Deep Learning Auto Encoder-Based Regions of Interest. Translational Vision Science and Technology, 2021, 10, 19.	2.2	10
350	Standard Reliability and Gaze Tracking Metrics in Glaucoma and Glaucoma Suspects. American Journal of Ophthalmology, 2022, 234, 91-98.	3.3	10
351	Intraocular Pressure Telemetry for Managing Glaucoma during the COVID-19 Pandemic. Ophthalmology Glaucoma, 2021, 4, 447-453.	1.9	10
352	Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage. American Journal of Ophthalmology, 2021, 231, 109-119.	3.3	10
353	Iridocorneal Angle Assessment After Laser Iridotomy With Swept-source Optical Coherence Tomography. Journal of Glaucoma, 2020, 29, 1030-1035.	1.6	10
354	24-hour ocular perfusion pressure in glaucoma patients. British Journal of Ophthalmology, 2011, 95, 1175-1176.	3.9	9
355	Relationship of Macular Thickness and Function to Optical Microangiography Measurements in Glaucoma. Journal of Glaucoma, 2018, 27, 210-218.	1.6	9
356	Rapid and Accurate Pressure Sensing Device for Direct Measurement of Intraocular Pressure. Translational Vision Science and Technology, 2020, 9, 28.	2.2	9
357	Glaucomatous vertical vessel density asymmetry of the temporal raphe detected with optical coherence tomography angiography. Scientific Reports, 2020, 10, 6845.	3.3	9
358	Changes in Corneal Biomechanics and Glaucomatous Visual Field Loss. Journal of Glaucoma, 2021, 30, e246-e251.	1.6	9
359	Macular Thickness and Microvasculature Loss in Glaucoma Suspect Eyes. Ophthalmology Glaucoma, 2022, 5, 170-178.	1.9	9
360	Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma. American Journal of Ophthalmology, 2021, 229, 26-33.	3.3	9

#	Article	IF	CITATIONS
361	Segmental differences found in aqueous angiographic-determined high - and low-flow regions of human trabecular meshwork. Experimental Eye Research, 2020, 196, 108064.	2.6	9
362	Association of severity of primary open-angle glaucoma with serum vitamin D levels in patients of African descent. Molecular Vision, 2019, 25, 438-445.	1.1	9
363	Safety and performance of a suprachoroidal sensor for telemetric measurement of intraocular pressure in the EYEMATE-SC trial. British Journal of Ophthalmology, 2023, 107, 518-524.	3.9	9
364	A Prospective Longitudinal Study to Investigate Corneal Hysteresis as a Risk Factor of Central Visual Field Progression in Glaucoma. American Journal of Ophthalmology, 2022, 240, 159-169.	3.3	9
365	Experimental investigations of intraocular eicosanoids: Cultured human trabecular cells and laser photocoagulation of the rabbit iris. Current Eye Research, 1985, 4, 281-290.	1.5	8
366	Twenty-four-hour intraocular pressure patterns in a symptomatic patient after ab interno trabeculotomy surgery. Clinical Ophthalmology, 2014, 8, 2195.	1.8	8
367	Pharmacodynamic profile of mydriatic agents delivered by ocular piezo-ejection microdosing compared with conventional eyedropper. Therapeutic Delivery, 2016, 7, 751-760.	2.2	8
368	Glaucoma-Intraocular Pressure Reduction. Handbook of Experimental Pharmacology, 2016, 242, 181-207.	1.8	8
369	Optic nerve head vessel density in different stages of pseudoexfoliation disease. British Journal of Ophthalmology, 2020, , bjophthalmol-2020-317605.	3.9	8
370	Accuracy of IOL power calculations in the very elderly. Eye, 2020, 34, 1848-1855.	2.1	8
371	A Modified Technique in Applying Sponge Soaked with Mitomycin C in Trabeculectomy. Asia-Pacific Journal of Ophthalmology, 2021, 10, 548-552.	2.5	8
372	Impact of Pupil Dilation on Optical Coherence Tomography Angiography Retinal Microvasculature in Healthy Eyes. Journal of Glaucoma, 2020, 29, 1025-1029.	1.6	8
373	Is Diabetes Mellitus a Blessing in Disguise for Primary Open-angle Glaucoma?. Journal of Glaucoma, 2021, 30, 1-4.	1.6	8
374	Nocturnal Variability of Intraocular Pressure Monitored With Contact Lens Sensor Is Associated With Visual Field Loss in Glaucoma. Journal of Glaucoma, 2021, 30, e56-e60.	1.6	8
375	Microtubule-granule relationships in motile human polymorphonuclear leukocytes. The Anatomical Record, 1988, 221, 679-686.	1.8	7
376	Association between Rates of Retinal Nerve Fiber Layer Thinning and Previous Disc Hemorrhage in Glaucoma. Ophthalmology Glaucoma, 2018, 1, 23-31.	1.9	7
377	Cellular and cytoskeletal alterations of scleral fibroblasts in response to glucocorticoid steroids. Experimental Eye Research, 2019, 187, 107774.	2.6	7
378	En Face Optical Coherence Tomography Imaging of Beta and Gamma Parapapillary Atrophy in High Myopia. Ophthalmology Glaucoma, 2019, 2, 55-62.	1.9	7

#	Article	lF	CITATIONS
379	Specificity of various cluster criteria used for the detection of glaucomatous visual field abnormalities. British Journal of Ophthalmology, 2020, 104, 822-826.	3.9	7
380	Referenced scans improve the repeatability of optical coherence tomography angiography measurements in normal and glaucoma eyes. British Journal of Ophthalmology, 2021, 105, 1542-1547.	3.9	7
381	COVID-19 Pandemic: Are We Back to Normal?. Journal of Glaucoma, 2020, 29, 611-612.	1.6	7
382	Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes. American Journal of Ophthalmology, 2021, 223, 229-240.	3.3	7
383	A Bibliometric and Mapping Analysis of Glaucoma Research between 1900 and 2019. Ophthalmology Glaucoma, 2022, 5, 16-25.	1.9	7
384	Association of serum retinol concentration with normal-tension glaucoma. Eye, 2022, 36, 1820-1825.	2.1	7
385	Central macular OCTA parameters in glaucoma. British Journal of Ophthalmology, 2023, 107, 207-214.	3.9	7
386	Central-most Visual Field Defects in Early Glaucoma. Journal of Glaucoma, 2021, 30, e68-e75.	1.6	7
387	Relationship of macular ganglion cell complex thickness to choroidal microvasculature drop-out in primary open-angle glaucoma. British Journal of Ophthalmology, 2023, 107, 809-815.	3.9	7
388	Bruch Membrane Opening Detection Accuracy in Healthy Eyes and Eyes With Glaucoma With and Without Axial High Myopia in an American and Korean Cohort. American Journal of Ophthalmology, 2022, 237, 221-234.	3.3	7
389	Glaucomatous Visual Field Progression in the African Descent and Glaucoma Evaluation Study (ADAGES): Eleven Years of Follow-up. American Journal of Ophthalmology, 2022, 239, 122-129.	3.3	7
390	Latanoprost and Dorzolamide for the Treatment of Pediatric Glaucoma: The Glaucoma Italian Pediatric Study (Gipsy), Design and Baseline Characteristics. Advances in Therapy, 2016, 33, 1305-1315.	2.9	6
391	Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis. British Journal of Ophthalmology, 2018, 102, 344-351.	3.9	6
392	Prophylactic laser iridotomy in primary angle-closure suspects. Lancet, The, 2019, 393, 1572-1574.	13.7	6
393	Intraocular Pressure Measurement in Patients Wearing Filtering Facepiece Masks. Journal of Glaucoma, 2020, 29, 999-1000.	1.6	6
394	Investigation of associations between Piezo1 mechanoreceptor gain-of-function variants and glaucoma-related phenotypes in humans and mice. Scientific Reports, 2020, 10, 19013.	3.3	6
395	The Relationship Between Intraocular Pressure and Rates of Central Versus Peripheral Visual Field Progression. Journal of Glaucoma, 2020, 29, 435-440.	1.6	6
396	Correlation Between Office-Hour and Peak Nocturnal Intraocular Pressure in Patients Treated with Prostaglandin Analogs. American Journal of Ophthalmology, 2020, 215, 112-117.	3.3	6

#	Article	IF	Citations
397	Comparison of Peripapillary Capillary Density in Glaucoma Patients of African and European Descent. Ophthalmology Glaucoma, 2021, 4, 51-62.	1.9	6
398	Review of glaucoma medication adherence monitoring in the digital health era. British Journal of Ophthalmology, 2023, 107, 153-159.	3.9	6
399	Optical Microangiography and Progressive Retinal Nerve Fiber Layer Loss in Primary Open Angle Glaucoma. American Journal of Ophthalmology, 2022, 233, 171-179.	3.3	6
400	Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice. JAMA Ophthalmology, 2021, 139, 839.	2.5	6
401	Correlation of ganglion cell complex thinning with baseline deep and superficial macular vessel density in glaucoma. British Journal of Ophthalmology, 2023, 107, 953-958.	3.9	6
402	Diagnostic Accuracy of Macular Thickness Map and Texture En Face Images for Detecting Glaucoma in Eyes With Axial High Myopia. American Journal of Ophthalmology, 2022, 242, 26-35.	3.3	6
403	Comparison of the Effects of Latanoprostene Bunod and Timolol on Retinal Blood Vessel Density: A Randomized Clinical Trial. American Journal of Ophthalmology, 2022, 241, 120-129.	3.3	6
404	A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images. Proceedings of SPIE, 2014, 9035, 903500.	0.8	5
405	Comparison of macular choroidal thickness in patients with pseudoexfoliation syndrome to normal control subjects with enhanced depth SD-OCT imaging. Journal of Current Ophthalmology, 2017, 29, 258-263.	0.8	5
406	Combined glaucoma and cataract surgery: Comparison of viscocanalostomy, endocyclophotocoagulation, and ab interno trabeculectomy. Journal of Cataract and Refractive Surgery, 2018, 44, 557-565.	1.5	5
407	Long-term follow-up of optic neuropathy in chronic low cerebrospinal fluid pressure monkeys: the Beijing Intracranial and Intraocular Pressure (iCOP) Study. Science China Life Sciences, 2020, 63, 1762-1765.	4.9	5
408	Rates of Circumpapillary Retinal Nerve Fiber Layer Thinning and Capillary Density Loss in Glaucomatous Eyes with Disc Hemorrhage. American Journal of Ophthalmology, 2022, 235, 24-31.	3.3	5
409	Progressive Thinning of Retinal Nerve FiberÂLayer and Ganglion Cell–Inner Plexiform Layer in Glaucoma Eyes with DiscÂHemorrhage. Ophthalmology Glaucoma, 2021, 4, 541-549.	1.9	5
410	Optic Disc Microvasculature Dropout in Glaucoma Detected by Swept-Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2022, 236, 261-270.	3.3	5
411	Gonioscopy-assisted transluminal trabeculotomy in primary congenital glaucoma. American Journal of Ophthalmology Case Reports, 2022, 25, 101366.	0.7	5
412	Macular and submacular choroidal microvasculature in patients with primary open-angle glaucoma and high myopia. British Journal of Ophthalmology, 2023, 107, 650-656.	3.9	5
413	Association Between Ganglion Cell Complex Thinning and Vision-Related Quality of Life in Glaucoma. JAMA Ophthalmology, 0, , .	2.5	5
414	Reducing corneal toxicity of 5â€fluorouracil in the early postoperative period following glaucoma filtering surgery. Australian and New Zealand Journal of Ophthalmology, 1991, 19, 197-202.	0.4	4

#	Article	IF	CITATIONS
415	Association between Rates of Retinal Nerve Fiber Layer Thinning after Intraocular Pressure–Lowering Procedures and Disc Hemorrhage. Ophthalmology Glaucoma, 2020, 3, 7-13.	1.9	4
416	Capillary Density Measured by Optical Coherence Tomography Angiography in Glaucomatous Optic Disc Phenotypes. American Journal of Ophthalmology, 2020, 219, 261-270.	3.3	4
417	Detection of Neurological and Ophthalmological Pathologies with Optical Coherence Tomography Using Retinal Thickness Measurements: A Bibliometric Study. Applied Sciences (Switzerland), 2020, 10, 5477.	2.5	4
418	The Value of Intraocular Pressure Telemetry in Monitoring the Therapeutic Effect of Glaucoma Medications. Journal of Glaucoma, 2020, 29, e38-e40.	1.6	4
419	Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study. , 2021, 62, 12.		4
420	Ophthalmic Diagnostic Imaging: Glaucoma. , 2019, , 107-134.		4
421	Optical Microangiography and Progressive Ganglion Cell–Inner Plexiform Layer Loss in Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 2022, 238, 36-44.	3.3	4
422	Macula structural and vascular differences in glaucoma eyes with and without high axial myopia. British Journal of Ophthalmology, 2023, 107, 1286-1294.	3.9	4
423	Comparison of Optic Disc Ovality Index and Rotation Angle Measurements in Myopic Eyes Using Photography and OCT Based Techniques. Frontiers in Medicine, 0, 9, .	2.6	4
424	Longitudinal Structure–Function RelationshipÂbetween Macular Vessel Density and Thickness and Central Visual Field in EarlyÂGlaucoma. Ophthalmology Glaucoma, 2022, 5, 648-657.	1.9	4
425	Glaucoma Considered as an Imbalance Between Production and Clearance of Neurotoxins., 2014, 55, 5353.		3
426	Implanted Microsensor Continuous IOP Telemetry Suggests Gaze and Eyelid Closure Effects on IOPâ€"A Preliminary Study. , 2021, 62, 8.		3
427	Optic Nerve Engraftment of Neural Stem Cells. , 2021, 62, 30.		3
428	Rates of Choroidal Microvasculature Dropout and Retinal Nerve Fiber Layer Changes in Glaucoma. American Journal of Ophthalmology, 2022, 241, 130-138.	3.3	3
429	Multi-Pressure Dial Goggle Effects on Circumpapillary Structure and Microvasculature in Glaucoma Patients. Ophthalmology Glaucoma, 2022, , .	1.9	3
430	Optical intraocular pressure measurement system for glaucoma management., 2017,,.		2
431	Advances in Ocular Imaging. Asia-Pacific Journal of Ophthalmology, 2019, 8, 97-98.	2.5	2
432	Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines. British Journal of Ophthalmology, 2022, 106, 229-233.	3.9	2

#	Article	lF	CITATIONS
433	The Glaucoma Italian Pediatric Study (GIPSy): The Long-term Effect of Topical Latanoprost on Central Corneal Thickness. Journal of Glaucoma, 2020, 29, 441-447.	1.6	2
434	Rates of Retinal Nerve Fiber Layer Thinning in Distinct Glaucomatous Optic Disc Phenotypes in Early Glaucoma. American Journal of Ophthalmology, 2021, 229, 8-17.	3.3	2
435	Reversal of a glaucomatous optic disc pit. American Journal of Ophthalmology Case Reports, 2021, 23, 101143.	0.7	2
436	Early changes in photopic negative response in eyes with glaucoma with and without choroidal detachment after filtration surgery. British Journal of Ophthalmology, 2023, 107, 1295-1302.	3.9	2
437	Measurement of intraocular temperature in glaucoma: week-day and seasonal fluctuations. British Journal of Ophthalmology, 2023, 107, 941-945.	3.9	2
438	Medication Affordability and Self-Advocacy Among Racial/Ethnic Minorities in a Nationwide Cohort. Journal of General Internal Medicine, 0, , .	2.6	2
439	Factors associated with choroidal microvascular dropout change. British Journal of Ophthalmology, 2023, 107, 1444-1451.	3.9	2
440	The promise of spectral-domain optical coherence tomography. Expert Review of Ophthalmology, 2008, 3, 501-504.	0.6	1
441	Agreement between Compass Fundus Perimeter New Grid and 10-2 Testing Protocols for Detecting Central Visual FieldÂDefects. Ophthalmology Glaucoma, 2021, , .	1.9	1
442	Association of Visual Field Pattern Reversal with Paracentral Visual Field Loss. Ophthalmology Glaucoma, 2022, 5, 353-358.	1.9	1
443	Response to Letter to the Editor: Superficial and Deep Macula Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Journal of Glaucoma, 2021, 30, 1082-1083.	1.6	1
444	Sheath-Preserving Optic Nerve Transection in Rats to Assess Axon Regeneration and Interventions Targeting the Retinal Ganglion Cell Axon. Journal of Visualized Experiments, 2020, , .	0.3	1
445	The Relationship Between Plasma Tetrahydrocannabinol Levels and Intraocular Pressure in Healthy Adult Subjects. Frontiers in Medicine, 2021, 8, 736792.	2.6	1
446	Superior segmental optic nerve hypoplasia: A review. Survey of Ophthalmology, 2022, 67, 1467-1475.	4.0	1
447	OCT-Angiography Face Mask–Associated Artifacts During the COVID-19 Pandemic. Journal of Glaucoma, 2022, 31, 399-405.	1.6	1
448	Diagnostic Testing in Ophthalmic Sarcoidosis. Seminars in Ophthalmology, 1987, 2, 257-272.	1.6	0
449	Using 5-Fluorouracil With Glaucoma Filtering Surgery. Seminars in Ophthalmology, 1991, 6, 66-69.	1.6	0
450	Author Response: Optic Neuropathy Secondary to Spontaneous Intracranial Hypotension (SIH) as Related to Experimental Primate Model., 2014, 55, 6177.		0

#	Article	IF	Citations
451	Reply. Ophthalmology, 2016, 123, e38.	5.2	0
452	Reply. Ophthalmology, 2017, 124, e51.	5.2	0
453	Reply. Ophthalmology, 2017, 124, e40.	5.2	0
454	Reply. Ophthalmology, 2018, 125, e27-e28.	5.2	0
455	Reply. Ophthalmology, 2018, 125, e22-e23.	5.2	0
456	In Reply: Reproducibility of Central Corneal Thickness Measurements in Healthy and Glaucomatous Eyes. Journal of Glaucoma, 2018, 27, e50-e50.	1.6	0
457	Potential clinical applications of optical coherence tomography angiography in glaucoma. Journal of Current Ophthalmology, 2018, 30, 191-193.	0.8	0
458	In Reply. Journal of Glaucoma, 2019, 28, e50.	1.6	0
459	Response to: Comparison of Fellow Eye of Acute Primary Angle Closure and Phacomorphic Angle Closure. Journal of Glaucoma, 2020, 29, e35-e36.	1.6	0
460	Response to Letter to the Editor: Optical Coherence Tomography Angiography and Visual Field Progression in Primary Angle Closure Glaucoma. Journal of Glaucoma, 2021, 30, e375-e376.	1.6	0
461	Reply. Ophthalmology, 2022, 129, e5.	5.2	0
462	Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) RNA in the Human Eye. Ocular Immunology and Inflammation, 2021, , 1-7.	1.8	0
463	OCT in Glaucoma. , 2020, , 427-472.		0
464	Glaucoma at the Hamilton Glaucoma Center and the University of California, San Diego. Yan Ke Xue Bao = Eye Science, 2011, 26, 9-15.	0.1	0