
Rodrigo Saar Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2180050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytokines and microbicidal molecules regulated by IL-32 in THP-1-derived human macrophages infected with New World Leishmania species. PLoS Neglected Tropical Diseases, 2017, 11, e0005413.	3.0	38
2	Leishmania (Viannia) braziliensis amastigotes induces the expression of TNFα and IL-10 by human peripheral blood mononuclear cells in vitro in a TLR4-dependent manner. Cytokine, 2016, 88, 184-192.	3.2	27
3	In vitro antileishmanial and cytotoxic activities of nerolidol are associated with changes in plasma membrane dynamics. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1049-1056.	2.6	21
4	IL-32Î ³ promotes the healing of murine cutaneous lesions caused by Leishmania braziliensis infection in contrast to Leishmania amazonensis. Parasites and Vectors, 2017, 10, 336.	2.5	18
5	The NOD2 receptor is crucial for immune responses towards New World Leishmania species. Scientific Reports, 2017, 7, 15219.	3.3	17
6	Antileishmanial activity of the chalcone derivative LQFM064 associated with reduced fluidity in the parasite membrane as assessed by EPR spectroscopy. European Journal of Pharmaceutical Sciences, 2020, 151, 105407.	4.0	17
7	Antileishmanial and cytotoxic activities of ionic surfactants compared to those of miltefosine. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110421.	5.0	16
8	Platelet-activating factor increases reactive oxygen species-mediated microbicidal activity of human macrophages infected with Leishmania (Viannia) braziliensis. Pathogens and Disease, 2017, 75, .	2.0	15
9	Human Interleukin-32γ Plays a Protective Role in an Experimental Model of Visceral Leishmaniasis in Mice. Infection and Immunity, 2018, 86, .	2.2	14
10	IL-15 enhances the capacity of primary human macrophages to control Leishmania braziliensis infection by IL-32/vitamin D dependent and independent pathways. Parasitology International, 2020, 76, 102097.	1.3	11
11	The role of IL-32 in Bacillus Calmette-Guérin (BCG)-induced trained immunity in infections caused by different Leishmania spp Microbial Pathogenesis, 2021, 158, 105088.	2.9	10
12	The Antileishmanial Potential of C-3 Functionalized Isobenzofuranones against Leishmania (Leishmania) Infantum Chagasi. Molecules, 2015, 20, 22435-22444.	3.8	9
13	Tollâ€like receptor 10 controls TLR2â€induced cytokine production in monocytes from patients with Parkinson's disease. Journal of Neuroscience Research, 2021, 99, 2511-2524.	2.9	5
14	Comparative EPR spectroscopy analysis of amphotericin B and miltefosine interactions with Leishmania, erythrocyte and macrophage membranes. European Journal of Pharmaceutical Sciences, 2021, 163, 105859.	4.0	5
15	Interferon-Beta Treatment Differentially Alters TLR2 and TLR4-Dependent Cytokine Production in Multiple Sclerosis Patients. NeuroImmunoModulation, 2019, 26, 77-83.	1.8	4
16	Alterations in monocyte subsets and cytokine production after TLR activation in American Cutaneous Leishmaniasis. Parasite Immunology, 2019, 41, e12623.	1.5	3
17	Lipophosphoglycan From Dermotropic New World Leishmania Upregulates Interleukin-32 and Proinflammatory Cytokines Through TLR4 and NOD2 Receptors. Frontiers in Cellular and Infection Microbiology, 2022, 12, 805720.	3.9	3
18	New world Leishmania spp. infection in people living with HIV: Concerns about relapses and secondary prophylaxis. Acta Tropica, 2021, 224, 106146.	2.0	2