Thomas E Juenger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2179567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A High-Throughput 3′-Tag RNA Sequencing for Large-Scale Time-Series Transcriptome Studies. Methods in Molecular Biology, 2022, 2398, 151-172.	0.4	5
2	Plasticity, pleiotropy and fitness tradeâ€offs in Arabidopsis genotypes with different telomere lengths. New Phytologist, 2022, 233, 1939-1952.	3.5	6
3	A generalist–specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118879119.	3.3	5
4	Impact of Harvest on Switchgrass Leaf Microbial Communities. Genes, 2022, 13, 22.	1.0	0
5	The genetic basis for panicle trait variation in switchgrass (Panicum virgatum). Theoretical and Applied Genetics, 2022, 135, 2577-2592.	1.8	2
6	Climate and stomatal traits drive covariation in nighttime stomatal conductance and daytime gas exchange rates in a widespread C ₄ grass. New Phytologist, 2021, 229, 2020-2034.	3.5	9
7	Natural variation in plant telomere length is associated with flowering time. Plant Cell, 2021, 33, 1118-1134.	3.1	29
8	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature, 2021, 590, 438-444.	13.7	144
9	QTL × environment interactions underlie ionome divergence in switchgrass . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
10	Chapter 6 Intraspecific Variation in Plant Responses to Atmospheric CO2, Temperature, and Water Availability. Advances in Photosynthesis and Respiration, 2021, , 133-169.	1.0	0
11	Novel and Emerging Capabilities that Can Provide a Holistic Understanding of the Plant Root Microbiome. Phytobiomes Journal, 2021, 5, 122-132.	1.4	16
12	Geographic patterns of genomic diversity and structure in the C4 grass <i>Panicum hallii</i> across its natural distribution. AoB PLANTS, 2021, 13, plab002.	1.2	18
13	The genetic basis of the root economics spectrum in a perennial grass. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
14	Artificial Selection on Microbiomes To Breed Microbiomes That Confer Salt Tolerance to Plants. MSystems, 2021, 6, e0112521.	1.7	36
15	Effects of two centuries of global environmental variation on phenology and physiology of <i>Arabidopsis thaliana</i> . Global Change Biology, 2020, 26, 523-538.	4.2	29
16	Environmentally responsive QTL controlling surface wax load in switchgrass. Theoretical and Applied Genetics, 2020, 133, 3119-3137.	1.8	11
17	Plant biomass, not plant economics traits, determines responses of soil CO ₂ efflux to precipitation in the C ₄ grass <i>Panicum virgatum</i> . Journal of Ecology, 2020, 108, 2095-2106.	1.9	8
18	Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (<i>Panicum virgatum</i>). New Phytologist, 2020, 227, 1696-1708.	3.5	19

#	Article	IF	CITATIONS
19	Root identification in minirhizotron imagery with multiple instance learning. Machine Vision and Applications, 2020, 31, 1.	1.7	16
20	Overcoming small minirhizotron datasets using transfer learning. Computers and Electronics in Agriculture, 2020, 175, 105466.	3.7	30
21	Genomics of sorghum local adaptation to a parasitic plant. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4243-4251.	3.3	57
22	Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean. Genetics, 2020, 215, 267-284.	1.2	26
23	Weakly Supervised Minirhizotron Image Segmentation with MIL-CAM. Lecture Notes in Computer Science, 2020, , 433-449.	1.0	7
24	Climatic impact, future biomass production, and local adaptation of four switchgrass cultivars. GCB Bioenergy, 2019, 11, 956-970.	2.5	9
25	Conservation of Endophyte Bacterial Community Structure Across Two Panicum Grass Species. Frontiers in Microbiology, 2019, 10, 2181.	1.5	19
26	Natural Variation in 9-Cis-Epoxycartenoid Dioxygenase 3 and ABA Accumulation. Plant Physiology, 2019, 179, 1620-1631.	2.3	32
27	Gene Expression analysis associated with salt stress in a reciprocally crossed rice population. Scientific Reports, 2019, 9, 8249.	1.6	66
28	QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12933-12941.	3.3	75
29	The Genetic Architecture of Shoot and Root Trait Divergence Between Mesic and Xeric Ecotypes of a Perennial Grass. Frontiers in Plant Science, 2019, 10, 366.	1.7	22
30	Complex interactions between day length and diurnal patterns of gene expression drive photoperiodic responses in a perennial C ₄ grass. Plant, Cell and Environment, 2019, 42, 2165-2182.	2.8	18
31	Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids. Plant Reproduction, 2019, 32, 275-289.	1.3	5
32	Components of the ribosome biogenesis pathway underlie establishment of telomere length set point in Arabidopsis. Nature Communications, 2019, 10, 5479.	5.8	16
33	Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Environmental Microbiology Reports, 2019, 11, 185-195.	1.0	65
34	Sensitivity Analysis of the APEX Model for Assessing Sustainability of Switchgrass Grown for Biofuel Production in Central Texas. Bioenergy Research, 2018, 11, 69-85.	2.2	3
35	Genetic Mapping Reveals an Anthocyanin Biosynthesis Pathway Gene Potentially Influencing Evolutionary Divergence between Two Subspecies of Scarlet Gilia (Ipomopsis aggregata). Molecular Biology and Evolution, 2018, 35, 807-822.	3.5	8
36	Quantitative trait loci for cell wall composition traits measured using near-infrared spectroscopy in the model C4 perennial grass Panicum hallii. Biotechnology for Biofuels, 2018, 11, 25.	6.2	8

#	Article	IF	CITATIONS
37	The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nature Communications, 2018, 9, 5213.	5.8	101
38	Population genomics and climate adaptation of a C4 perennial grass, Panicum hallii (Poaceae). BMC Genomics, 2018, 19, 792.	1.2	9
39	Reproductive stage physiological and transcriptional responses to salinity stress in reciprocal populations derived from tolerant (Horkuch) and susceptible (IR29) rice. Scientific Reports, 2017, 7, 46138.	1.6	46
40	Natural variation identifies genes affecting drought-induced abscisic acid accumulation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11536-11541.	3.3	53
41	Interactive effects of water limitation and elevated temperature on the physiology, development and fitness of diverse accessions of <i>Brachypodium distachyon</i> . New Phytologist, 2017, 214, 132-144.	3.5	39
42	Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nature Communications, 2017, 8, 2184.	5.8	269
43	Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids. PLoS Genetics, 2016, 12, e1006197.	1.5	100
44	Promises and challenges of eco-physiological genomics in the field: tests of drought responses in switchgrass. Plant Physiology, 2016, 172, pp.00545.2016.	2.3	46
45	Quantitative trait loci associated with natural diversity in water-use efficiency and response to soil drying in Brachypodium distachyon. Plant Science, 2016, 251, 2-11.	1.7	21
46	Molecular, genetic and evolutionary analysis of a paracentric inversion in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 159-178.	2.8	81
47	Adaptive differentiation in floral traits in the presence of high gene flow in scarlet gilia (Ipomopsis) Tj ETQq1 1 0	.784314 rg 2.0	gBT_/Overlo <mark>c</mark> i
48	The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (<i>Panicum virgatum)</i> . G3: Genes, Genomes, Genetics, 2016, 6, 3561-3570.	0.8	55
49	QTL and Drought Effects on Leaf Physiology in Lowland Panicum virgatum. Bioenergy Research, 2016, 9, 1241-1259.	2.2	12
50	Ecological interactions and the fitness effect of waterâ€use efficiency: Competition and drought alter the impact of natural <i>MPK12</i> alleles in <i>Arabidopsis</i> . Ecology Letters, 2016, 19, 424-434.	3.0	47
51	Drought responsive gene expression regulatory divergence between upland and lowland ecotypes of a perennial C ₄ grass. Genome Research, 2016, 26, 510-518.	2.4	52
52	Spatial land use trade-offs for maintenance of biodiversity, biofuel, and agriculture. Landscape Ecology, 2015, 30, 1987-1999.	1.9	19
53	Deeply Diverged Alleles in the Arabidopsis AREB1 Transcription Factor Drive Genome-Wide Differences in Transcriptional Response to the Environment. Molecular Biology and Evolution, 2015, 32, 956-969.	3.5	10
54	Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nature Communications, 2015, 6, 7453.	5.8	109

#	Article	IF	CITATIONS
55	Genome-environment associations in sorghum landraces predict adaptive traits. Science Advances, 2015, 1, e1400218.	4.7	257
56	QTLs for Biomass and Developmental Traits in Switchgrass (Panicum virgatum). Bioenergy Research, 2015, 8, 1856-1867.	2.2	30
57	Exploiting Differential Gene Expression and Epistasis to Discover Candidate Genes for Drought-Associated QTLs in <i>Arabidopsis thaliana</i> . Plant Cell, 2015, 27, 969-983.	3.1	52
58	The genetics of divergence and reproductive isolation between ecotypes of <i>Panicum hallii</i> . New Phytologist, 2015, 205, 402-414.	3.5	65
59	Brachypodium and the Abiotic Environment. Plant Genetics and Genomics: Crops and Models, 2015, , 291-311.	0.3	7
60	Extensive crossâ€environment fitness variation lies along few axes of genetic variation in the model alga, <i><scp>C</scp>hlamydomonas reinhardtii</i> . New Phytologist, 2015, 205, 841-851.	3.5	10
61	Direct and indirect selection on flowering time, waterâ€use efficiency (<scp>WUE</scp> , <i>) Tj ETQq1 1 0.7843 Ecology and Evolution, 2014, 4, 4505-4521.</i>	0.8 014 rgBT	Overlock 10 T 107
62	Variation in <i>MPK12</i> affects water use efficiency in <i>Arabidopsis</i> and reveals a pleiotropic link between guard cell size and ABA response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2836-2841.	3.3	91
63	Adaptations between Ecotypes and along Environmental Gradients in <i>Panicum virgatum</i> . American Naturalist, 2014, 183, 682-692.	1.0	99
64	Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis Â. Plant Physiology, 2014, 164, 144-159.	2.3	114
65	The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana. Photosynthesis Research, 2014, 119, 119-129.	1.6	74
66	Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana. Molecular Biology and Evolution, 2014, 31, 2283-2296.	3.5	125
67	Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.). BMC Genomics, 2014, 15, 527.	1.2	77
68	Genotype-by-Environment Interaction and Plasticity: Exploring Genomic Responses of Plants to the Abiotic Environment. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 5-29.	3.8	325
69	Development of a next-generation NIL library in Arabidopsis thaliana for dissecting complex traits. BMC Genomics, 2013, 14, 655.	1.2	22
70	Genotypic variation in traits linked to climate and aboveground productivity in a widespread C ₄ grass: evidence for a functional trait syndrome. New Phytologist, 2013, 199, 966-980.	3.5	69
71	Natural variation and genetic constraints on drought tolerance. Current Opinion in Plant Biology, 2013, 16, 274-281.	3.5	131
72	Pleiotropy of <i>FRIGIDA</i> enhances the potential for multivariate adaptation. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131043.	1.2	125

#	Article	IF	CITATIONS
73	A population genetic transect of <i>Panicum hallii</i> (Poaceae). American Journal of Botany, 2013, 100, 592-601.	0.8	27
74	Gamete fertility and ovule number variation in selfed reciprocal F 1 hybrid triploid plants are heritable and display epigenetic parentâ€ofâ€origin effects. New Phytologist, 2013, 198, 71-81.	3.5	25
75	Microsatellite markers for the native Texas perennial grass, Panicum hallii (Poaceae). American Journal of Botany, 2012, 99, e114-6.	0.8	9
76	Intron-mediated alternative splicing of <i>Arabidopsis P5CS1</i> and its association with natural variation in proline and climate adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9197-9202.	3.3	136
77	Physiological Genomics of Response to Soil Drying in Diverse <i>Arabidopsis</i> Accessions. Plant Cell, 2012, 24, 893-914.	3.1	137
78	Arabidopsis <i>ECERIFERUM9</i> Involvement in Cuticle Formation and Maintenance of Plant Water Status Â. Plant Physiology, 2012, 159, 930-944.	2.3	150
79	Characterizing genomic variation of <i>Arabidopsis thaliana</i> : the roles of geography and climate. Molecular Ecology, 2012, 21, 5512-5529.	2.0	215
80	Population Differentiation in <i>Daphnia</i> Alters Community Assembly in Experimental Ponds. American Naturalist, 2011, 177, 314-322.	1.0	10
81	Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Current Opinion in Plant Biology, 2011, 14, 240-245.	3.5	167
82	Identification and characterization of nuclear microsatellite loci for multiple species of chorus frogs (Pseudacris) for population genetic analyses. Conservation Genetics Resources, 2011, 3, 233-237.	0.4	7
83	Neuroendocrine Effects of Developmental PCB Exposure, with Particular Reference to Hypothalamic Gene Expression. Research and Perspectives in Endocrine Interactions, 2011, , 1-21.	0.2	Ο
84	Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kasâ€1 and Tsuâ€1 accessions of <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2010, 33, 1268-1284.	2.8	40
85	Pleiotropy, plasticity, and the evolution of plant abiotic stress tolerance. Annals of the New York Academy of Sciences, 2010, 1206, 56-79.	1.8	89
86	Substantial deletion overlap among divergent Arabidopsis genomes revealed by intersection of short reads and tiling arrays. Genome Biology, 2010, 11, R4.	13.9	31
87	Developmental Profiles of Neuroendocrine Gene Expression in the Preoptic Area of Male Rats. Endocrinology, 2009, 150, 2308-2316.	1.4	44
88	HERITABILITY AND CORRELATION STRUCTURE OF NECTAR AND FLORAL MORPHOLOGY TRAITS IN <i>NICOTIANA ALATA</i> . Evolution; International Journal of Organic Evolution, 2008, 62, 1738-1750.	1.1	38
89	GENETICS OF DROUGHT ADAPTATION INARABIDOPSIS THALIANAII. QTL ANALYSIS OF A NEW MAPPING POPULATION, KAS-1 × TSU-1. Evolution; International Journal of Organic Evolution, 2008, 62, 3014-3026.	1.1	128
90	Genetic variation in <i>Arabidopsis thaliana</i> for nightâ€ŧime leaf conductance. Plant, Cell and Environment, 2008, 31, 1170-1178.	2.8	61

#	Article	IF	CITATIONS
91	Effects of Perinatal Polychlorinated Biphenyls on Adult Female Rat Reproduction: Development, Reproductive Physiology, and Second Generational Effects1. Biology of Reproduction, 2008, 78, 1091-1101.	1.2	85
92	The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats. Hormones and Behavior, 2007, 51, 364-372.	1.0	78
93	Isolation and characterization of nuclear microsatellite loci for the common green darner dragonfly Anax junius (Odonata: Aeshnidae) to constrain patterns of phenotypic and spatial diversity. Molecular Ecology Notes, 2007, 7, 845-847.	1.7	6
94	Natural genetic variation in whole-genome expression in Arabidopsis thaliana: the impact of physiological QTL introgression. Molecular Ecology, 2006, 15, 1351-1365.	2.0	37
95	Quantitative trait loci mapping of floral and leaf morphology traits inArabidopsis thaliana: evidence for modular genetic architecture. Evolution & Development, 2005, 7, 259-271.	1.1	108
96	Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: delta13C, stomatal conductance and transpiration efficiency. Plant, Cell and Environment, 2005, 28, 697-708.	2.8	162
97	QUANTITATIVE TRAIT LOCI AFFECTING ?13C AND RESPONSE TO DIFFERENTIAL WATER AVAILIBILITY IN ARABIDOPSIS THALLANA. Evolution; International Journal of Organic Evolution, 2005, 59, 81-96.	1.1	70
98	Scarlet gilia resistance to insect herbivory: the effects of early season browsing, plant apparency, and phytochemistry on patterns of seed fly attack. Evolutionary Ecology, 2005, 19, 79-101.	0.5	29
99	Epistasis and genotype-environment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana. Genetica, 2005, 123, 87-105.	0.5	66
100	QUANTITATIVE TRAIT LOCI AFFECTING δ13C AND RESPONSE TO DIFFERENTIAL WATER AVAILIBILITY IN ARABIDOPSIS THALIANA. Evolution; International Journal of Organic Evolution, 2005, 59, 81.	1.1	1
101	Mapping Quantitative Trait Loci in Multiple Populations of Arabidopsis thaliana Identifies Natural Allelic Variation for Trichome Density. Genetics, 2005, 169, 1649-1658.	1.2	85
102	Quantitative trait loci affecting delta13C and response to differential water availibility in Arabidopsis thaliana. Evolution; International Journal of Organic Evolution, 2005, 59, 81-96.	1.1	71
103	THE EVOLUTION OF COMPENSATION TO HERBIVORY IN SCARLET GILIA, IPOMOPSIS AGGREGATA: HERBIVORE-IMPOSED NATURAL SELECTION AND THE QUANTITATIVE GENETICS OF TOLERANCE. Evolution; International Journal of Organic Evolution, 2000, 54, 764-777.	1.1	133
104	The evolution of tolerance to damage in Gentianella campestris: natural selection and the quantitative genetics of tolerance. Evolutionary Ecology, 2000, 14, 393.	0.5	63
105	THE EVOLUTION OF COMPENSATION TO HERBIVORY IN SCARLET GILIA, IPOMOPSIS AGGREGATA: HERBIVORE-IMPOSED NATURAL SELECTION AND THE QUANTITATIVE GENETICS OF TOLERANCE. Evolution; International Journal of Organic Evolution, 2000, 54, 764.	1.1	18
106	DOES EARLY SEASON BROWSING INFLUENCE THE EFFECT OF SELF-POLLINATION IN SCARLET GILIA?. Ecology, 2000, 81, 41-48.	1.5	20
107	Quantitative Trait Loci for Floral Morphology in <i>Arabidopsis thaliana</i> . Genetics, 2000, 156, 1379-1392.	1.2	96
108	Pairwise Versus Diffuse Natural Selection and the Multiple Herbivores of Scarlet Gilia, Ipomopsis aggregata. Evolution; International Journal of Organic Evolution, 1998, 52, 1583.	1.1	57

#	Article	IF	CITATIONS
109	PAIRWISE VERSUS DIFFUSE NATURAL SELECTION AND THE MULTIPLE HERBIVORES OF SCARLET GILIA, <i>IPOMOPSIS AGGREGATA</i> . Evolution; International Journal of Organic Evolution, 1998, 52, 1583-1592.	1.1	108
110	POLLEN AND RESOURCE LIMITATION OF COMPENSATION TO HERBIVORY IN SCARLET GILIA, IPOMOPSIS AGGREGATA. Ecology, 1997, 78, 1684-1695.	1.5	114
111	Pollen and Resource Limitation of Compensation to Herbivory in Scarlet Gilia, Ipomopsis Aggregata. Ecology, 1997, 78, 1684.	1.5	27
112	Regrowth Following Herbivory in Ipomopsis aggregata: Compensation but not Overcompensation. American Naturalist, 1996, 148, 744-755.	1.0	77