
Bart De Strooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/217810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do we still need animals? Surveying the role of animalâ€free models in Alzheimer's and Parkinson's disease research. EMBO Journal, 2022, 41, e110002.	3.5	11
2	The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nature Reviews Drug Discovery, 2022, 21, 306-318.	21.5	273
3	AAVâ€mediated delivery of an antiâ€BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Molecular Medicine, 2022, 14, e09824.	3.3	13
4	The β-Secretase BACE1 in Alzheimer's Disease. Biological Psychiatry, 2021, 89, 745-756.	0.7	336
5	Stem-cell-derived human microglia transplanted into mouse brain to study human disease. Nature Protocols, 2021, 16, 1013-1033.	5.5	43
6	Dementia and COVID-19: a health and research funding crisis. Lancet Neurology, The, 2021, 20, 90.	4.9	1
7	Lowering Synaptogyrin-3 expression rescues Tau-induced memory defects and synaptic loss in the presence of microglial activation. Neuron, 2021, 109, 767-777.e5.	3.8	41
8	Alzheimer's disease. Lancet, The, 2021, 397, 1577-1590.	6.3	1,530
9	Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer's disease. Cell Stem Cell, 2021, 28, 1805-1821.e8.	5.2	76
10	Identifying individuals with high risk of Alzheimer's disease using polygenic risk scores. Nature Communications, 2021, 12, 4506.	5.8	91
11	Knock-in models related to Alzheimer's disease: synaptic transmission, plaques and the role of microglia. Molecular Neurodegeneration, 2021, 16, 47.	4.4	27
12	From Junk to Function: LncRNAs in CNS Health and Disease. Frontiers in Molecular Neuroscience, 2021, 14, 714768.	1.4	27
13	Aducanumab: a new phase in therapeutic development for Alzheimer's disease?. EMBO Molecular Medicine, 2021, 13, e14781.	3.3	47
14	Human iPSC-derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid-β plaques. Molecular Neurodegeneration, 2021, 16, 68.	4.4	28
15	Cellular senescence at the crossroads of inflammation and Alzheimer's disease. Trends in Neurosciences, 2021, 44, 714-727.	4.2	108
16	The amyloid precursor protein is a conserved Wnt receptor. ELife, 2021, 10, .	2.8	22
17	The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nature Reviews Neurology, 2021, 17, 703-714.	4.9	65
18	The promise of microRNA-based therapies in Alzheimer's disease: challenges and perspectives. Molecular Neurodegeneration, 2021, 16, 76.	4.4	52

#	Article	IF	CITATIONS
19	Induction of tau pathology, tangles and necroptosis in human neurons exposed to amyloid plaques in chimeric mouse brain. Alzheimer's and Dementia, 2021, 17, e049953.	0.4	0
20	Contribution of GABAergic interneurons to amyloid- \hat{I}^2 plaque pathology in an APP knock-in mouse model. Molecular Neurodegeneration, 2020, 15, 3.	4.4	26
21	Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer's disease. Acta Neuropathologica, 2020, 139, 463-484.	3.9	91
22	Computational Analysis of Alzheimer Amyloid Plaque Composition in 2D- and Elastically Reconstructed 3D-MALDI MS Images. Analytical Chemistry, 2020, 92, 14484-14493.	3.2	15
23	Single-Nucleus RNA-Seq Is Not Suitable for Detection of Microglial Activation Genes in Humans. Cell Reports, 2020, 32, 108189.	2.9	201
24	Modeling the β-secretase cleavage site and humanizing amyloid-beta precursor protein in rat and mouse to study Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 60.	4.4	37
25	Microglia Require CD4ÂT Cells to Complete the Fetal-to-Adult Transition. Cell, 2020, 182, 625-640.e24.	13.5	191
26	Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease. Cell, 2020, 182, 976-991.e19.	13.5	491
27	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	13.7	108
28	Identification and in vivo characterization of a brain-penetrating nanobody. Fluids and Barriers of the CNS, 2020, 17, 62.	2.4	35
29	Loss of synaptogyrinâ€3 rescues tauâ€induced memory defects and synaptic loss in the presence of microglial activation. Alzheimer's and Dementia, 2020, 16, e047527.	0.4	1
30	Tipping the Scales: Peptide-Dependent Dysregulation of Neural Circuit Dynamics in Alzheimer's Disease. Neuron, 2020, 107, 417-435.	3.8	90
31	Mixing Aβ(1–40) and Aβ(1–42) peptides generates unique amyloid fibrils. Chemical Communications, 2020, 56, 8830-8833.	2.2	39
32	Novel Alzheimer risk genes determine the microglia response to amyloidâ€Î² but not to TAU pathology. EMBO Molecular Medicine, 2020, 12, e10606.	3.3	182
33	Translating genetic risk of Alzheimer's disease into mechanistic insight and drug targets. Science, 2020, 370, 61-66.	6.0	84
34	Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nature Neuroscience, 2019, 22, 2111-2116.	7.1	176
35	Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Science Translational Medicine, 2019, 11, .	5.8	74
36	The Major Risk Factors for Alzheimer's Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques. Cell Reports, 2019, 27, 1293-1306.e6.	2.9	527

#	Article	IF	CITATIONS
37	Nuclear import of the <scp>DSCAM</scp> ytoplasmic domain drives signaling capable of inhibiting synapse formation. EMBO Journal, 2019, 38, .	3.5	37
38	EphA4 loss improves social memory performance and alters dendritic spine morphology without changes in amyloid pathology in a mouse model of Alzheimer's disease. Alzheimer's Research and Therapy, 2019, 11, 102.	3.0	17
39	PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 277-286.	3.3	64
40	Human stem cell–derived monocytes and microgliaâ€like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimer's and Dementia, 2019, 15, 453-464.	0.4	55
41	Secreted amyloid-β precursor protein functions as a GABA _B R1a ligand to modulate synaptic transmission. Science, 2019, 363, .	6.0	205
42	Subtle behavioral changes and increased prefrontal-hippocampal network synchronicity in APPNLâ^'Gâ^'F mice before prominent plaque deposition. Behavioural Brain Research, 2019, 364, 431-441.	1.2	63
43	Synaptogyrin-3 Mediates Presynaptic Dysfunction Induced by Tau. Neuron, 2018, 97, 823-835.e8.	3.8	151
44	High fat diet treatment impairs hippocampal long-term potentiation without alterations of the core neuropathological features of Alzheimer disease. Neurobiology of Disease, 2018, 113, 82-96.	2.1	34
45	Modulation of γ- and β-Secretases as Early Prevention Against Alzheimer's Disease. Biological Psychiatry, 2018, 83, 320-327.	0.7	54
46	Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Molecular Neurodegeneration, 2018, 13, 54.	4.4	80
47	Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of <i>APP</i> . Brain, 2018, 141, 2457-2474.	3.7	96
48	Generation of a human induced pluripotent stem cell–based model for tauopathies combining three microtubuleâ€associated protein TAU mutations which displays several phenotypes linked to neurodegeneration. Alzheimer's and Dementia, 2018, 14, 1261-1280.	0.4	41
49	BACE2 distribution in major brain cell types and identification of novel substrates. Life Science Alliance, 2018, 1, e201800026.	1.3	46
50	Cardiolipin promotes electron transport between ubiquinone and complex I to rescue <i>PINK1</i> deficiency. Journal of Cell Biology, 2017, 216, 695-708.	2.3	48
51	microRNAâ€132: a key noncoding RNA operating in the cellular phase of Alzheimer's disease. FASEB Journal, 2017, 31, 424-433.	0.2	87
52	PLD3 gene and processing of APP. Nature, 2017, 541, E1-E2.	13.7	42
53	Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain. Neuron, 2017, 93, 1066-1081.e8.	3.8	204
54	BACE1 Dynamics Upon Inhibition with a BACE Inhibitor and Correlation to Downstream Alzheimer's Disease Markers in Elderly Healthy Participants. Journal of Alzheimer's Disease, 2017, 56, 1437-1449.	1.2	28

#	Article	IF	CITATIONS
55	Tau association with synaptic vesicles causes presynaptic dysfunction. Nature Communications, 2017, 8, 15295.	5.8	289
56	Deletion of exons 9 and 10 of the Presenilin 1 gene in a patient with Early-onset Alzheimer Disease generates longer amyloid seeds. Neurobiology of Disease, 2017, 104, 97-103.	2.1	27
57	Inactivation of γâ€secretases leads to accumulation of substrates and nonâ€Alzheimer neurodegeneration. EMBO Molecular Medicine, 2017, 9, 1088-1099.	3.3	35
58	Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer's Disease. Stem Cell Reports, 2017, 8, 870-882.	2.3	53
59	Noncoding RNAs in neurodegeneration. Nature Reviews Neuroscience, 2017, 18, 627-640.	4.9	121
60	Alzheimer's-Causing Mutations Shift Aβ Length by Destabilizing γ-Secretase-Aβn Interactions. Cell, 2017, 170, 443-456.e14.	13.5	199
61	<scp>APP</scp> mouse models for Alzheimer's disease preclinical studies. EMBO Journal, 2017, 36, 2473-2487.	3.5	530
62	[P2–141]: TRISOMY 21 CAUSES A DEFICIT IN LYSOSOMAL CATHEPSINS AND ALTERS APP/Aβ PROCESSING, INDEPENDENTLY OF AN EXTRA COPY OF <i>APP</i> . Alzheimer's and Dementia, 2017, 13, P661.	0.4	0
63	Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nature Communications, 2017, 8, 1614.	5.8	172
64	Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods in Enzymology, 2017, 584, 59-97.	0.4	9
65	The amyloid cascade hypothesis: are we poised for success or failure?. Journal of Neurochemistry, 2016, 139, 237-252.	2.1	308
66	Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons. Molecular Neurodegeneration, 2016, 11, 67.	4.4	90
67	ECâ€01â€01: Targeting Secretases in the Prodromal, Cellular Phase of Alzheimer Disease. Alzheimer's and Dementia, 2016, 12, P161.	0.4	0
68	Alzheimer's Disease Mechanisms and Emerging Roads to Novel Therapeutics. Annual Review of Neuroscience, 2016, 39, 57-79.	5.0	97
69	Familial Alzheimer's Disease Mutations in Presenilin Generate Amyloidogenic Aβ Peptide Seeds. Neuron, 2016, 90, 410-416.	3.8	86
70	A LRRK2-Dependent EndophilinA Phosphoswitch Is Critical for Macroautophagy at Presynaptic Terminals. Neuron, 2016, 92, 829-844.	3.8	202
71	miRâ€132 loss deâ€represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain. EMBO Molecular Medicine, 2016, 8, 1005-1018.	3.3	117
72	PARL: The mitochondrial rhomboid protease. Seminars in Cell and Developmental Biology, 2016, 60, 19-28.	2.3	58

#	Article	IF	CITATIONS
73	Probing γâ€secretase–substrate interactions at the single amino acid residue level. EMBO Journal, 2016, 35, 1597-1599.	3.5	2
74	Neurodegeneration: From cellular concepts to clinical applications. Science Translational Medicine, 2016, 8, 364ps18.	5.8	73
75	Clinical phenotype and genetic associations in autosomal dominant familial Alzheimer's disease: a case series. Lancet Neurology, The, 2016, 15, 1326-1335.	4.9	163
76	Restricted Location of PSEN2/ \hat{I}^3 -Secretase Determines Substrate Specificity and Generates an Intracellular A \hat{I}^2 Pool. Cell, 2016, 166, 193-208.	13.5	260
77	Melanoma addiction to the long non-coding RNA SAMMSON. Nature, 2016, 531, 518-522.	13.7	488
78	BACE1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer's Disease. Trends in Neurosciences, 2016, 39, 158-169.	4.2	142
79	The Cellular Phase of Alzheimer's Disease. Cell, 2016, 164, 603-615.	13.5	1,346
80	Alzheimer's disease. Lancet, The, 2016, 388, 505-517.	6.3	2,430
81	The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity. Diabetes, 2016, 65, 53-61.	0.3	114
82	The dynamic conformational landscape of \hat{I}^3 -secretase. Journal of Cell Science, 2015, 128, 589-98.	1.2	63
83	P4-016: Al ² production in the brains of familial Alzheimer's disease patients. , 2015, 11, P773-P773.		Ο
84	miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood, 2015, 125, 2206-2216.	0.6	70
85	Learning by Failing: Ideas and Concepts to Tackle Î ³ -Secretases in Alzheimer's Disease and Beyond. Annual Review of Pharmacology and Toxicology, 2015, 55, 419-437.	4.2	117
86	PINK1 Kinase Catalytic Activity Is Regulated by Phosphorylation on Serines 228 and 402. Journal of Biological Chemistry, 2015, 290, 2798-2811.	1.6	93
87	Dysregulated ADAM10-Mediated Processing of APP during a Critical Time Window Leads to Synaptic Deficits in Fragile X Syndrome. Neuron, 2015, 87, 382-398.	3.8	59
88	PINK1 activation–turning on a promiscuous kinase. Biochemical Society Transactions, 2015, 43, 280-286.	1.6	15
89	On the identification of low allele frequency mosaic mutations in the brains of Alzheimer's disease patients. Alzheimer's and Dementia, 2015, 11, 1265-1276.	0.4	57
90	Genetic determinants of white matter hyperintensities and amyloid angiopathy in familial Alzheimer's disease. Neurobiology of Aging, 2015, 36, 3140-3151.	1.5	53

#	Article	IF	CITATIONS
91	Qualitative changes in human γ-secretase underlie familial Alzheimer's disease. Journal of Experimental Medicine, 2015, 212, 2003-2013.	4.2	134
92	Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer's disease mouse models. Science Translational Medicine, 2015, 7, 309ra164.	5.8	61
93	Amyloid β Oligomers Disrupt Blood–CSF Barrier Integrity by Activating Matrix Metalloproteinases. Journal of Neuroscience, 2015, 35, 12766-12778.	1.7	140
94	Antagonistic Effects of BACE1 and APH1B-Î ³ -Secretase Control Axonal Guidance by Regulating Growth Cone Collapse. Cell Reports, 2015, 12, 1367-1376.	2.9	60
95	Deficiency of the miR-29a/b-1 cluster leads to ataxic features and cerebellar alterations in mice. Neurobiology of Disease, 2015, 73, 275-288.	2.1	46
96	The Parkinson's gene PINK1 regulates cell cycle progression and promotes cancer-associated phenotypes. Oncogene, 2015, 34, 1363-1374.	2.6	60
97	Variance in the identification of microRNAs deregulated in Alzheimer's disease and possible role of lincRNAs in the pathology: The need of larger datasets. Ageing Research Reviews, 2014, 17, 43-53.	5.0	55
98	PINK1 Loss-of-Function Mutations Affect Mitochondrial Complex I Activity via NdufA10 Ubiquinone Uncoupling. Science, 2014, 344, 203-207.	6.0	300
99	Signature Amyloid β Profiles Are Produced by Different γ-Secretase Complexes. Journal of Biological Chemistry, 2014, 289, 4346-4355.	1.6	74
100	Epigenetically regulated microRNAs in Alzheimer's disease. Neurobiology of Aging, 2014, 35, 731-745.	1.5	105
101	Lessons from a Failed Î ³ -Secretase Alzheimer Trial. Cell, 2014, 159, 721-726.	13.5	255
102	The Alzheimer Disease Protective Mutation A2T Modulates Kinetic and Thermodynamic Properties of Amyloid-β (Aβ) Aggregation. Journal of Biological Chemistry, 2014, 289, 30977-30989.	1.6	132
103	A Self-Organizing miR-132/Ctbp2 Circuit Regulates Bimodal Notch Signals and Glial Progenitor Fate Choice during Spinal Cord Maturation. Developmental Cell, 2014, 30, 423-436.	3.1	32
104	The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Human Molecular Genetics, 2014, 23, 5227-5242.	1.4	264
105	Gene and MicroRNA Transcriptome Analysis of Parkinson's Related LRRK2 Mouse Models. PLoS ONE, 2014, 9, e85510.	1.1	36
106	Cell autonomous regulation of hippocampal circuitry via Aph1b-γ-secretase/neuregulin 1 signalling. ELife, 2014, 3, .	2.8	23
107	Redundancy and divergence in the amyloid precursor protein family. FEBS Letters, 2013, 587, 2036-2045.	1.3	71
108	Amyloid and Tau Neuropathology Differentially Affect Prefrontal Synaptic Plasticity and Cognitive Performance in Mouse Models of Alzheimer's Disease, Journal of Alzheimer's Disease, 2013, 37, 109-125	1.2	32

#	Article	IF	CITATIONS
109	β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer's disease. Nature Medicine, 2013, 19, 43-49.	15.2	158
110	Dose-dependent improvements in learning and memory deficits in APPPS1-21 transgenic mice treated with the orally active AÎ ² toxicity inhibitor SEN1500. Neuropharmacology, 2013, 75, 458-466.	2.0	12
111	Chronic 5-HT4 receptor activation decreases AÎ ² production and deposition in hAPP/PS1 mice. Neurobiology of Aging, 2013, 34, 1779-1789.	1.5	44
112	Mutations in the Intellectual Disability Gene Ube2a Cause Neuronal Dysfunction and Impair Parkin-Dependent Mitophagy. Molecular Cell, 2013, 50, 831-843.	4.5	80
113	When the dust settles: what did we learn from the bexarotene discussion?. Alzheimer's Research and Therapy, 2013, 5, 54.	3.0	14
114	The Drosophila Homologue of the Amyloid Precursor Protein Is a Conserved Modulator of Wnt PCP Signaling. PLoS Biology, 2013, 11, e1001562.	2.6	71
115	Alteration of the micro <scp>RNA</scp> network during the progression of Alzheimer's disease. EMBO Molecular Medicine, 2013, 5, 1613-1634.	3.3	408
116	BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10658-10663.	3.3	136
117	Near-Infrared 808 nm Light Boosts Complex IV-Dependent Respiration and Rescues a Parkinson-Related pink1 Model. PLoS ONE, 2013, 8, e78562.	1.1	39
118	BACE1 Levels Correlate with Phospho-Tau Levels in Human Cerebrospinal Fluid. Current Alzheimer Research, 2013, 10, 671-678.	0.7	24
119	MiR-29a Maintains Hematopoietic Stem Cell Self-Renewal and Is Required For Myeloid Leukemogenesis. Blood, 2013, 122, 1190-1190.	0.6	0
120	Close encounter: mitochondria, endoplasmic reticulum and Alzheimer's disease. EMBO Journal, 2012, 31, 4095-4097.	3.5	22
121	The mechanism of Î ³ -Secretase dysfunction in familial Alzheimer disease. EMBO Journal, 2012, 31, 2261-2274.	3.5	432
122	The Yeast Complex I Equivalent NADH Dehydrogenase Rescues pink1 Mutants. PLoS Genetics, 2012, 8, e1002456.	1.5	86
123	Presenilins and Â-Secretase: Structure, Function, and Role in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006304-a006304.	2.9	375
124	Neurotoxicity and Memory Deficits Induced by Soluble Low-Molecular-Weight Amyloid-Â1-42 Oligomers Are Revealed In Vivo by Using a Novel Animal Model. Journal of Neuroscience, 2012, 32, 7852-7861.	1.7	156
125	Response to Shilling et al. (10.1074/jbc.M111.300491). Journal of Biological Chemistry, 2012, 287, 20469.	1.6	12
126	Down-regulation of the ATP-binding Cassette Transporter 2 (Abca2) Reduces Amyloid-Î ² Production by Altering Nicastrin Maturation and Intracellular Localization. Journal of Biological Chemistry, 2012, 287, 1100-1111.	1.6	39

#	Article	IF	CITATIONS
127	The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo Journal of Biological Chemistry, 2012, 287, 33719.	1.6	2
128	The Neural Cell Adhesion Molecules L1 and CHL1 Are Cleaved by BACE1 Protease in Vivo. Journal of Biological Chemistry, 2012, 287, 25927-25940.	1.6	152
129	Molecular Plasticity Regulates Oligomerization and Cytotoxicity of the Multipeptide-length Amyloid-β Peptide Pool. Journal of Biological Chemistry, 2012, 287, 36732-36743.	1.6	37
130	A breach in the blood–brain barrier. Nature, 2012, 485, 451-452.	13.7	25
131	Alzheimer's Disease: Presenilin 2-Sparing γ-Secretase Inhibition Is a Tolerable Aβ Peptide-Lowering Strategy. Journal of Neuroscience, 2012, 32, 17297-17305.	1.7	43
132	Vitamin K ₂ Is a Mitochondrial Electron Carrier That Rescues Pink1 Deficiency. Science, 2012, 336, 1306-1310.	6.0	304
133	The toxic AÎ ² oligomer and Alzheimer's disease: an emperor in need of clothes. Nature Neuroscience, 2012, 15, 349-357.	7.1	1,690
134	LRRK2 Controls an EndoA Phosphorylation Cycle in Synaptic Endocytosis. Neuron, 2012, 75, 1008-1021.	3.8	312
135	βâ€5ecretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Molecular Medicine, 2012, 4, 980-991.	3.3	125
136	LRRK2 expression is enriched in the striosomal compartment of mouse striatum. Neurobiology of Disease, 2012, 48, 582-593.	2.1	57
137	A protective mutation. Nature, 2012, 488, 38-39.	13.7	20
138	The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nature Immunology, 2012, 13, 181-187.	7.0	152
139	Modification of γâ€secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer's disease. EMBO Molecular Medicine, 2012, 4, 660-673.	3.3	68
140	Peptides based on the presenilinâ€APP binding domain inhibit APP processing and Aβ production through interfering with the APP transmembrane domain. FASEB Journal, 2012, 26, 3765-3778.	0.2	11
141	Alterations in phosphatidylethanolamine levels affect the generation of AÎ ² . Aging Cell, 2012, 11, 63-72.	3.0	31
142	Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurology, The, 2012, 11, 189-200.	4.9	222
143	Inhibition of β-Secretase in Vivo via Antibody Binding to Unique Loops (D and F) of BACE1. Journal of Biological Chemistry, 2011, 286, 8677-8687.	1.6	46
144	The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nature Reviews Drug Discovery, 2011, 10, 698-712.	21.5	1,766

#	Article	IF	CITATIONS
145	The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development (Cambridge), 2011, 138, 495-505.	1.2	130
146	ADAM9 Inhibition Increases Membrane Activity of ADAM10 and Controls α-Secretase Processing of Amyloid Precursor Protein. Journal of Biological Chemistry, 2011, 286, 40443-40451.	1.6	54
147	Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood, 2011, 118, 1163-1174.	0.6	69
148	A novel strategy for the comprehensive analysis of the biomolecular composition of isolated plasma membranes. Molecular Systems Biology, 2011, 7, 541.	3.2	37
149	The Swedish APP mutation alters the effect of genetically reduced BACE1 expression on the APP processing. Journal of Neurochemistry, 2011, 119, 231-239.	2.1	25
150	The World of Dementia Beyond 2020. Journal of the American Geriatrics Society, 2011, 59, 923-927.	1.3	73
151	The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nature Reviews Neuroscience, 2011, 12, 73-87.	4.9	240
152	Synaptic dysfunction in hippocampus of transgenic mouse models of Alzheimer's disease: A multi-electrode array study. Neurobiology of Disease, 2011, 44, 284-291.	2.1	58
153	Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Molecular Neurodegeneration, 2011, 6, 36.	4.4	93
154	Amyloid precursor protein mutation E682K at the alternative βâ€secretase cleavage βâ€2â€site increases Aβ generation. EMBO Molecular Medicine, 2011, 3, 291-302.	3.3	97
155	Mutagenesis Mapping of the Presenilin 1 Calcium Leak Conductance Pore. Journal of Biological Chemistry, 2011, 286, 22339-22347.	1.6	63
156	Functional and Topological Analysis of Pen-2, the Fourth Subunit of the γ-Secretase Complex. Journal of Biological Chemistry, 2011, 286, 12271-12282.	1.6	42
157	ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E559-68.	3.3	221
158	Parkin Interacts with Ambra1 to Induce Mitophagy. Journal of Neuroscience, 2011, 31, 10249-10261.	1.7	239
159	An overlooked neurotoxic species in Alzheimer's disease. Nature Neuroscience, 2011, 14, 949-950.	7.1	14
160	Neurons Generated from APP/APLP1/APLP2 Triple Knockout Embryonic Stem Cells Behave Normally in Vitro and in Vivo: Lack of Evidence for a Cell Autonomous Role of the Amyloid Precursor Protein in Neuronal Differentiation. Stem Cells, 2010, 28, 399-406.	1.4	35
161	Peroxisome Proliferator-Activated Receptor Gamma Enhances the Activity of an Insulin Degrading Enzyme-Like Metalloprotease for Amyloid-β. Journal of Alzheimer's Disease, 2010, 20, 1119-1132.	1.2	19
162	\hat{I}^3 -secretases: from cell biology to therapeutic strategies. Lancet Neurology, The, 2010, 9, 215-226.	4.9	162

#	Article	IF	CITATIONS
163	Cancer and neurodegeneration meet. EMBO Molecular Medicine, 2010, 2, 245-246.	3.3	2
164	Prion protein in Alzheimer's pathogenesis: a hot and controversial issue. EMBO Molecular Medicine, 2010, 2, 289-290.	3.3	34
165	Neurotoxicity of Alzheimer's disease Al̂² peptides is induced by small changes in the Al̂²42 to Al̂²40 ratio. EMBO Journal, 2010, 29, 3408-3420.	3.5	455
166	Role of Presenilins in Neuronal Calcium Homeostasis. Journal of Neuroscience, 2010, 30, 8566-8580.	1.7	158
167	The Disintegrin/Metalloproteinase ADAM10 Is Essential for the Establishment of the Brain Cortex. Journal of Neuroscience, 2010, 30, 4833-4844.	1.7	327
168	Proteases and Proteolysis in Alzheimer Disease: A Multifactorial View on the Disease Process. Physiological Reviews, 2010, 90, 465-494.	13.1	389
169	Î ³ -Secretase and the Intramembrane Proteolysis of Notch. Current Topics in Developmental Biology, 2010, 92, 201-230.	1.0	46
170	Alzheimer's Disease Neurons Fail the Acid Test. Cell, 2010, 141, 1112-1114.	13.5	7
171	Dysregulated microRNAs in neurodegenerative disorders. Seminars in Cell and Developmental Biology, 2010, 21, 768-773.	2.3	91
172	Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Human Molecular Genetics, 2010, 19, 3959-3969.	1.4	285
173	Mitochondria Dysfunction and Neurodegenerative Disorders: Cause or Consequence. Journal of Alzheimer's Disease, 2010, 20, S255-S263.	1.2	95
174	The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature Reviews Neurology, 2010, 6, 99-107.	4.9	702
175	Novel Research Horizons for Presenilins and Î ³ -Secretases in Cell Biology and Disease. Annual Review of Cell and Developmental Biology, 2010, 26, 235-260.	4.0	224
176	Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. Alzheimer's Research and Therapy, 2010, 3, 1.	3.0	424
177	The Orphan G Protein–Coupled Receptor 3 Modulates Amyloid-Beta Peptide Generation in Neurons. Science, 2009, 323, 946-951.	6.0	150
178	γ-Secretase Heterogeneity in the Aph1 Subunit: Relevance for Alzheimer's Disease. Science, 2009, 324, 639-642.	6.0	233
179	Epigenetic control of aquaporin 1 expression by the amyloid precursor protein. FASEB Journal, 2009, 23, 4158-4167.	0.2	48
180	Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation. Brain, 2009, 132, 1335-1345.	3.7	93

#	Article	IF	CITATIONS
181	Notch Is a Critical Component of the Mouse Somitogenesis Oscillator and Is Essential for the Formation of the Somites. PLoS Genetics, 2009, 5, e1000662.	1.5	97
182	G Protein–Coupled Receptors, Cholinergic Dysfunction, and Aβ Toxicity in Alzheimer's Disease. Science Signaling, 2009, 2, re8.	1.6	44
183	MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiology of Disease, 2009, 33, 422-428.	2.1	386
184	Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Molecular Medicine, 2009, 1, 99-111.	3.3	360
185	Alzheimer's dementia by circulation disorders: when trees hide the forest. Nature Cell Biology, 2009, 11, 114-116.	4.6	25
186	Analysis of the Î ³ -secretase interactome and validation of its association with tetraspanin-enriched microdomains. Nature Cell Biology, 2009, 11, 1340-1346.	4.6	121
187	Alterations of the microRNA network cause neurodegenerative disease. Trends in Neurosciences, 2009, 32, 199-206.	4.2	430
188	Structure and function of \hat{I}^3 -secretase. Seminars in Cell and Developmental Biology, 2009, 20, 211-218.	2.3	82
189	21-P047 Notch is essential for the mouse segmentation clock. Mechanisms of Development, 2009, 126, S327.	1.7	0
190	ADAM10, the Rate-limiting Protease of Regulated Intramembrane Proteolysis of Notch and Other Proteins, Is Processed by ADAMS-9, ADAMS-15, and the γ-Secretase. Journal of Biological Chemistry, 2009, 284, 11738-11747.	1.6	161
191	Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO Journal, 2008, 27, 224-233.	3.5	303
192	Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription. Experimental Cell Research, 2008, 314, 2419-2433.	1.2	43
193	Deficiency of Aph1B/C-Î ³ -secretase disturbs Nrg1 cleavage and sensorimotor gating that can be reversed with antipsychotic treatment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9775-9780.	3.3	77
194	Phosphorylation of the Translation Initiation Factor eIF2α Increases BACE1 Levels and Promotes Amyloidogenesis. Neuron, 2008, 60, 988-1009.	3.8	383
195	Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6415-6420.	3.3	1,054
196	Glu332 in the Nicastrin Ectodomain Is Essential for Î ³ -Secretase Complex Maturation but Not for Its Activity. Journal of Biological Chemistry, 2008, 283, 20096-20105.	1.6	97
197	Transmembrane Domain 9 of Presenilin Determines the Dynamic Conformation of the Catalytic Site of Î ³ -Secretase. Journal of Biological Chemistry, 2008, 283, 19793-19803.	1.6	67
198	Presenilins: Members of the Î ³ -Secretase Quartets, But Part-Time Soloists Too. Physiology, 2008, 23, 194-204.	1.6	108

#	Article	IF	CITATIONS
199	Loss of Î ³ -Secretase Function Impairs Endocytosis of Lipoprotein Particles and Membrane Cholesterol Homeostasis. Journal of Neuroscience, 2008, 28, 12097-12106.	1.7	62
200	Active Î ³ -Secretase Complexes Contain Only One of Each Component. Journal of Biological Chemistry, 2007, 282, 33985-33993.	1.6	155
201	1-(3â€ ² ,4â€ ² -Dichloro-2-fluoro[1,1â€ ² -biphenyl]-4-yl)-cyclopropanecarboxylic Acid (CHF5074), a Novel Î ³ -Secreta Modulator, Reduces Brain Î ² -Amyloid Pathology in a Transgenic Mouse Model of Alzheimer's Disease without Causing Peripheral Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 822-830.	lse 1.3	82
202	A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. Journal of Cell Science, 2007, 120, 1707-1716.	1.2	166
203	Regulated Intramembrane Proteolysis of the Interleukin-1 Receptor II by α-, β-, and γ-Secretase. Journal of Biological Chemistry, 2007, 282, 11982-11995.	1.6	128
204	ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death and Differentiation, 2007, 14, 1040-1049.	5.0	165
205	Lossâ€ofâ€function presenilin mutations in Alzheimer disease. EMBO Reports, 2007, 8, 141-146.	2.0	313
206	miRNAs in Neurodegeneration. Science, 2007, 317, 1179-1180.	6.0	158
207	Familial Alzheimer disease–linked mutations specifically disrupt Ca2+ leak function of presenilin 1. Journal of Clinical Investigation, 2007, 117, 1230-1239.	3.9	206
208	Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling. Cell, 2006, 126, 163-175.	13.5	648
209	OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion. Cell, 2006, 126, 177-189.	13.5	1,403
210	Presenilins Form ER Ca2+ Leak Channels, a Function Disrupted by Familial Alzheimer's Disease-Linked Mutations. Cell, 2006, 126, 981-993.	13.5	605
211	Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. Journal of Neurochemistry, 2006, 96, 732-742.	2.1	387
212	European Alzheimer Disease Funding. Nature Medicine, 2006, 12, 776-777.	15.2	0
213	Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes. EMBO Reports, 2006, 7, 739-745.	2.0	174
214	Alzheimer dementia caused by a novel mutation located in the APP C-terminal intracytosolic fragment. Human Mutation, 2006, 27, 888-896.	1.1	62
215	Tumour necrosis factor-α, interleukin-6 and interleukin-8 do not promote adhesion of human endometrial epithelial cells to mesothelial cells in a quantitative in vitro model*. Human Reproduction, 2006, 21, 605-609.	0.4	19
216	Contribution of Presenilin Transmembrane Domains 6 and 7 to a Water-containing Cavity in the Î ³ -Secretase Complex. Journal of Biological Chemistry, 2006, 281, 27633-27642.	1.6	130

#	Article	IF	CITATIONS
217	Presenilin-1 Maintains a Nine-Transmembrane Topology throughout the Secretory Pathway. Journal of Biological Chemistry, 2006, 281, 26569-26577.	1.6	104
218	Neuronal lithography with single cell resolution on chemically and topographically functionalised surfaces. , 2005, , .		0
219	Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nature Cell Biology, 2005, 7, 1118-1123.	4.6	404
220	ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and β-catenin nuclear signalling. EMBO Journal, 2005, 24, 742-752.	3.5	438
221	ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and β-catenin nuclear signalling. EMBO Journal, 2005, 24, 1762-1762.	3.5	5
222	Amyloid precursor protein promotes post-developmental neurite arborization in the Drosophila brain. EMBO Journal, 2005, 24, 2944-2955.	3.5	193
223	The amyloid-β precursor protein: integrating structure with biological function. EMBO Journal, 2005, 24, 3996-4006.	3.5	225
224	β Subunits of Voltage-gated Sodium Channels Are Novel Substrates of β-Site Amyloid Precursor Protein-cleaving Enzyme (BACE1) and γ-Secretase. Journal of Biological Chemistry, 2005, 280, 23009-23017.	1.6	260
225	ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and Â-catenin translocation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9182-9187.	3.3	604
226	Differential contribution of the three Aph1 genes to Â-secretase activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1719-1724.	3.3	173
227	Random Mutagenesis of Presenilin-1 Identifies Novel Mutants Exclusively Generating Long Amyloid β-Peptides. Journal of Biological Chemistry, 2005, 280, 19070-19077.	1.6	42
228	Phenotypic and Biochemical Analyses of BACE1- and BACE2-deficient Mice. Journal of Biological Chemistry, 2005, 280, 30797-30806.	1.6	309
229	Nicastrin: Gatekeeper of the Î ³ -Secretase Complex. Cell, 2005, 122, 318-320.	13.5	40
230	Analysis of Notch Function in Presomitic Mesoderm Suggests a Î ³ -Secretase-Independent Role for Presenilins in Somite Differentiation. Developmental Cell, 2005, 8, 677-688.	3.1	132
231	Gene Dosage Effect on γ-Secretase Component Aph-1b in a Rat Model for Neurodevelopmental Disorders. Neuron, 2005, 45, 497-503.	3.8	37
232	Coordinated Metabolism of Alcadein and Amyloid β-Protein Precursor Regulates FE65-dependent Gene Transactivation. Journal of Biological Chemistry, 2004, 279, 24343-24354.	1.6	75
233	Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. Journal of Cell Biology, 2004, 166, 1041-1054.	2.3	177
234	Peroxisome Proliferator-Activated Receptor Induces a Clearance Mechanism for the Amyloid- Peptide. Journal of Neuroscience, 2004, 24, 10908-10917.	1.7	166

#	Article	IF	CITATIONS
235	Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice. Human Molecular Genetics, 2004, 13, 1321-1331.	1.4	76
236	BACE1 and Presenilin: Two Unusual Aspartyl Proteases Involved in Alzheimer's Disease. Neurodegenerative Diseases, 2004, 1, 168-174.	0.8	25
237	Neuronal membrane cholesterol loss enhances amyloid peptide generation. Journal of Cell Biology, 2004, 167, 953-960.	2.3	308
238	Conserved residues within the putative active site of gamma-secretase differentially influence enzyme activity and inhibitor binding. Journal of Neurochemistry, 2004, 90, 1312-1320.	2.1	22
239	Amyloid-beta precursor protein processing in neurodegeneration. Current Opinion in Neurobiology, 2004, 14, 582-588.	2.0	223
240	Notch pathway is dispensable for adipocyte specification. Genesis, 2004, 40, 40-44.	0.8	48
241	P4-313 Presenilin-1 induces NF-κB activation via a RIP-P62-APKC signaling cascade. Neurobiology of Aging, 2004, 25, S564.	1.5	Ο
242	P4-373 A knock down screen for identification of putative Alzheimer's disease modifying drugable genes that modulate amyloid levels. Neurobiology of Aging, 2004, 25, S581.	1.5	0
243	Coordinated and widespread expression of Î ³ -secretase in vivo: evidence for size and molecular heterogeneity. Neurobiology of Disease, 2004, 17, 260-272.	2.1	143
244	Cell–matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation. Journal of Cell Biology, 2004, 165, 893-902.	2.3	260
245	Presenilins in Memory, Alzheimer's Disease, and Therapy. Neuron, 2004, 42, 189-192.	3.8	63
246	P1-287 Amyloid precursor protein isessential for survival after traumatic brain injury. Neurobiology of Aging, 2004, 25, S177.	1.5	0
247	Comparison and meta-analysis of microarray data: from the bench to the computer desk. Trends in Genetics, 2003, 19, 570-577.	2.9	169
248	Gene profiling of hippocampal neuronal culture. Journal of Neurochemistry, 2003, 85, 1279-1288.	2.1	36
249	Presenilin-dependent Î ³ -secretase activity mediates the intramembranous cleavage of CD44. Oncogene, 2003, 22, 1511-1516.	2.6	139
250	Mental plaque removal. Nature, 2003, 423, 392-393.	13.7	42
251	Aph-1, Pen-2, and Nicastrin with Presenilin Generate an Active Î ³ -Secretase Complex. Neuron, 2003, 38, 9-12.	3.8	902
252	A presenilin dimer at the core of the Â-secretase enzyme: Insights from parallel analysis of Notch 1 and APP proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13075-13080.	3.3	203

#	Article	IF	CITATIONS
253	The Cell Adhesion Protein P-selectin Glycoprotein Ligand-1 Is a Substrate for the Aspartyl Protease BACE1. Journal of Biological Chemistry, 2003, 278, 48713-48719.	1.6	230
254	Syndecan 3 Intramembrane Proteolysis Is Presenilin/γ-Secretase-dependent and Modulates Cytosolic Signaling. Journal of Biological Chemistry, 2003, 278, 48651-48657.	1.6	88
255	Presenilins Mutated at Asp-257 or Asp-385 Restore Pen-2 Expression and Nicastrin Glycosylation but Remain Catalytically Inactive in the Absence of Wild Type Presenilin. Journal of Biological Chemistry, 2003, 278, 43430-43436.	1.6	96
256	Î ³ -Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation. Journal of Cell Science, 2003, 116, 1127-1136.	1.2	183
257	A physiologic signaling role for the Â-secretase-derived intracellular fragment of APP. Proceedings of the United States of America, 2002, 99, 4697-4702.	3.3	261
258	The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Human Molecular Genetics, 2002, 11, 2615-2624.	1.4	580
259	Endoplasmic Reticulum Stress-inducible Protein, Herp, Enhances Presenilin-mediated Generation of Amyloid β-Protein. Journal of Biological Chemistry, 2002, 277, 12915-12920.	1.6	119
260	A Cell Biological Perspective on Alzheimer's Disease. Annual Review of Cell and Developmental Biology, 2002, 18, 25-51.	4.0	199
261	In Vitro Studies of Flemish, Dutch, and Wild-Type β-Amyloid Provide Evidence for Two-Staged Neurotoxicity. Neurobiology of Disease, 2002, 11, 330-340.	2.1	44
262	Characterization of Lentiviral Vector-Mediated Gene Transfer in Adult Mouse Brain. Human Gene Therapy, 2002, 13, 841-853.	1.4	127
263	Presenilin Couples the Paired Phosphorylation of β-Catenin Independent of Axin. Cell, 2002, 110, 751-762.	13.5	236
264	FAD mutant PS-1 gene-targeted mice: increased Aβ42 and Aβ deposition without APP overproduction. Neurobiology of Aging, 2002, 23, 335-348.	1.5	111
265	Novel therapeutic strategies provide the real test for the amyloid hypothesis of Alzheimer's disease. Trends in Pharmacological Sciences, 2002, 23, 324-330.	4.0	63
266	No endogenous Aβ production in presenilin-deficient fibroblasts. Nature Cell Biology, 2002, 4, E164-E164.	4.6	21
267	Missorting of the Dendritic Cell Adhesion Molecule Telencephalin in Presenilin-Deficient Neurons. Research and Perspectives in Alzheimer's Disease, 2002, , 89-99.	0.1	0
268	Î ³ -Secretase: never more enigmatic. Trends in Neurosciences, 2001, 24, S2-S6.	4.2	49
269	Interaction with Telencephalin and the Amyloid Precursor Protein Predicts a Ring Structure for Presenilins. Neuron, 2001, 32, 579-589.	3.8	192
270	The amyloid precursor protein (APP)-cytoplasmic fragment generated by Î ³ -secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. Journal of Neurochemistry, 2001, 78, 1168-1178.	2.1	219

#	Article	IF	CITATIONS
271	Implication of APP Secretases in Notch Signaling. Journal of Molecular Neuroscience, 2001, 17, 171-181.	1.1	69
272	Presenilins and the intramembrane proteolysis of proteins: facts and fiction. Nature Cell Biology, 2001, 3, E221-E225.	4.6	49
273	An inflammatory drug prospect. Nature, 2001, 414, 159-160.	13.7	43
274	The First Proline of PALP Motif at the C Terminus of Presenilins Is Obligatory for Stabilization, Complex Formation, and Î ³ -Secretase Activities of Presenilins. Journal of Biological Chemistry, 2001, 276, 33273-33281.	1.6	81
275	The Disintegrins ADAM10 and TACE Contribute to the Constitutive and Phorbol Ester-regulated Normal Cleavage of the Cellular Prion Protein. Journal of Biological Chemistry, 2001, 276, 37743-37746.	1.6	222
276	Secretases as therapeutic targets for the treatment of Alzheimer's disease. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2001, 8, 124-142.	1.4	30
277	Elevation of β-Amyloid Peptide 2–42 in Sporadic and Familial Alzheimer's Disease and Its Generation in PS1 Knockout Cells. Journal of Biological Chemistry, 2001, 276, 42645-42657.	1.6	115
278	Where Notch and WNT Signaling Meet. Journal of Cell Biology, 2001, 152, F17-F20.	2.3	77
279	Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Human Molecular Genetics, 2001, 10, 1665-1671.	1.4	178
280	Processing of β-Secretase by Furin and Other Members of the Proprotein Convertase Family. Journal of Biological Chemistry, 2001, 276, 4211-4217.	1.6	171
281	The discrepancy between presenilin subcellular localization and Î ³ -secretase processing of amyloid precursor protein. Journal of Cell Biology, 2001, 154, 731-740.	2.3	155
282	The Putative Role of Presenilins in the Transmembrane Domain Cleavage of Amyloid Precursor Protein and Other Integral Membrane Proteins. Research and Perspectives in Alzheimer's Disease, 2001, , 129-140.	0.1	0
283	Closing in on Î ³ -secretase. Nature, 2000, 405, 627-628.	13.7	39
284	DNA-Dependent Protein Kinase Is Not Required for Efficient Lentivirus Integration. Journal of Virology, 2000, 74, 11278-11285.	1.5	84
285	Neuronal models to study amyloid precursor protein expression and processing in vitro. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 53-62.	1.8	3
286	Nonfibrillar diffuse amyloid deposition due to a gamma42-secretase site mutation points to an essential role for N-truncated Abeta42 in Alzheimer's disease. Human Molecular Genetics, 2000, 9, 2589-2598.	1.4	135
287	Presenilin Function in APP Processing. Annals of the New York Academy of Sciences, 2000, 920, 158-164.	1.8	22
288	Proteolytic processing and cell biological functions of the amyloid precursor protein. Journal of Cell Science, 2000, 113 (Pt 11), 1857-70.	1.2	214

#	Article	IF	CITATIONS
289	Presenilin 1 Controls Î ³ -Secretase Processing of Amyloid Precursor Protein in Pre-Golgi Compartments of Hippocampal Neurons. Journal of Cell Biology, 1999, 147, 277-294.	2.3	305
290	Developmental Expression of Wild-Type and Mutant Presenilin-1 in Hippocampal Neurons from Transgenic Mice: Evidence for Novel Species-Specific Properties of Human Presenilin-1. Molecular Medicine, 1999, 5, 542-554.	1.9	29
291	Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11872-11877.	3.3	481
292	A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature, 1999, 398, 518-522.	13.7	2,002
293	A firm base for drug development. Nature, 1999, 402, 471-472.	13.7	55
294	The function of presenilin-1 in amyloid β-peptide generation and brain development. European Archives of Psychiatry and Clinical Neuroscience, 1999, 249, 271-279.	1.8	11
295	Presenilin-1 deficiency leads to loss of Cajal–Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Current Biology, 1999, 9, 719-727.	1.8	132
296	The Presenilins in Alzheimer's DiseaseProteolysis Holds the Key. Science, 1999, 286, 916-919.	6.0	390
297	Presenilins: molecular switches between proteolysis and signal transduction. Trends in Neurosciences, 1999, 22, 439-443.	4.2	129
298	Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 1998, 391, 387-390.	13.7	1,765
299	Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature, 1998, 395, 698-702.	13.7	499
300	Downregulation of PS1 expression in neurons decreases beta-amyloid production: a biochemical link between the two major familial Alzheimer's disease genes. Molecular Psychiatry, 1998, 3, 287-289.	4.1	5
301	Transgenic mice expressing an α-secretion mutant of the amyloid precursor protein in the brain develop a progressive CNS disorder. Behavioural Brain Research, 1998, 95, 55-64.	1.2	21
302	Cholesterol depletion inhibits the generation of Â-amyloid in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6460-6464.	3.3	1,144
303	Phosphorylation, Subcellular Localization, and Membrane Orientation of the Alzheimer's Disease-associated Presenilins. Journal of Biological Chemistry, 1997, 272, 3590-3598.	1.6	268
304	801 Expression in brain of Amyloid Precursor Protein mutated in the α-secretase site, causes disturbed behavior, neuronal degeneration and premature death in transgenic mice. Neurobiology of Aging, 1996, 17, S199.	1.5	0
305	Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. Journal of Neuroscience, 1996, 16, 899-908.	1.7	172
306	Expression in brain of amyloid precursor protein mutated in the alpha-secretase site causes disturbed behavior, neuronal degeneration and premature death in transgenic mice EMBO Journal, 1996, 15, 1265-1274.	3.5	173

#	Article	IF	CITATIONS
307	The beta-amyloid domain is essential for axonal sorting of amyloid precursor protein EMBO Journal, 1996, 15, 5218-5229.	3.5	123
308	A 68-kD Antigen, Which Is Probably an N-Terminal Fragment of the VLA-5 α ₅ -Subunit, Is Specific for Differentiating Keratinocytes. Dermatology, 1996, 193, 212-220.	0.9	3
309	Amyloidogenic Processing of Human Amyloid Precursor Protein in Hippocampal Neurons Devoid of Cathepsin D. Journal of Biological Chemistry, 1996, 271, 27241-27244.	1.6	87
310	Amyloid Precursor Protein Accumulation in Lewy Body Dementia and Alzheimers Disease. Dementia and Geriatric Cognitive Disorders, 1995, 6, 63-68.	0.7	9
311	Basolateral Secretion of Amyloid Precursor Protein in Madin-Darby Canine Kidney Cells Is Disturbed by Alterations of Intracellular pH and by Introducing a Mutation Associated with Familial Alzheimer's Disease. Journal of Biological Chemistry, 1995, 270, 4058-4065.	1.6	66
312	Amyloid precursor protein is not processed by furin, PACE 4, PC1/3, PC2, PC4 and PC5/6 of the furin family of proprotein processing enzymes. BBA - Proteins and Proteomics, 1995, 1246, 185-188.	2.1	7
313	Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence EMBO Journal, 1995, 14, 4932-4938.	3.5	161
314	Exchanging the Extracellular Domain of Amyloid Precursor Protein for Horseradish Peroxidase Does Not Interfere with α-Secretase Cleavage of the β-Amyloid Region, but Randomizes Secretion in Madin-Darby Canine Kidney Cells. Journal of Biological Chemistry, 1995, 270, 30310-30314.	1.6	26
315	Cloning, characterization, and chromosomal localization to 4p16 of the human gene (LRPAP1) coding for the l±2-macroglobulin receptor-associated protein and structural comparison with the murine gene coding for the 44-kDa heparin-binding protein. Genomics, 1995, 25, 492-500.	1.3	13
316	Expression in mouse embryos and in adult mouse brain of three members of the amyloid precursor protein family, of the alpha-2-macroglobulin receptor/low density lipoprotein receptor-related protein and of its ligands apolipoprotein E, lipoprotein lipase, alpha-2-macroglobulin and the 40,000 molecular weight receptor-associated protein. Neuroscience, 1995, 65, 1009-1025.	1.1	147
317	Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. EMBO Journal, 1995, 14, 4932-8.	3.5	67
318	Molecular Cloning of the Mouse Gene Coding for $\hat{I}\pm 2$ -Macroglobulin and Targeting of the Gene in Embryonic Stem Cells. Genomics, 1994, 22, 519-529.	1.3	18
319	Structure of the Gene (LRP1) Coding for the Human α2-Macroglobulin Receptor Lipoprotein Receptor-Related Protein. Genomics, 1994, 24, 78-89.	1.3	27
320	α2-macroglobulin and subacute-phase responses in Alzheimer's disease. Trends in Immunology, 1993, 14, 143.	7.5	6
321	Molecular cloning and sequencing of the murine alpha-2-macroglobulin receptor cDNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1173, 71-74.	2.4	29
322	α2-macroglobulin expression in neuritic-type plaques in patients with Alzheimer's disease. Neurobiology of Aging, 1993, 14, 233-237.	1.5	104
323	A Monoclonal Antibody to the α2 Integrin Subunit Cross-Reacts with RGD-Dependent Epitopes in Fibrinogen. Hybridoma, 1993, 12, 467-474.	0.9	1
324	Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): cleavage of APP occurs in a late compartment of the default secretion pathway Journal of Cell Biology, 1993, 121, 295-304.	2.3	151

#	Article	IF	CITATIONS
325	α2-Macroglobulin and other proteinase inhibitors do not interfere with the secretion of amyloid precursor protein in mouse neuroblastoma cells. FEBS Letters, 1992, 308, 50-53.	1.3	19
326	The primary sequence and the subunit structure of mouse alpha-2-macroglobulin, deduced from protein sequencing of the isolated subunits and from molecular cloning of the cDNA. FEBS Journal, 1992, 210, 319-327.	0.2	36
327	The amyloid β protein precursor or proteinase nexin II from mouse is closer related to its human homolog than previously reported. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1129, 141-143.	2.4	32
328	Cultured human fibroblasts contain a large pool of precursor beta1-integrin but lack an intracellular pool of mature subunit. FEBS Journal, 1991, 199, 25-33.	0.2	43
329	Distribution of the beta 1 subgroup of the integrins in human cells and tissues Journal of Histochemistry and Cytochemistry, 1989, 37, 299-307.	1.3	74
330	Mapping of human fibronectin receptor? subunit gene to chromosome 10. Somatic Cell and Molecular Genetics, 1988, 14, 99-104.	0.7	17
331	Post-translational modification of the β-subunit of the human fibronectin receptor. FEBS Letters, 1988, 231, 402-406.	1.3	27
332	Monoclonal antibody DH12 reacts with a cell surface and a precursor form of the ? subunit of the human fibronectin receptor. Cell Biology International Reports, 1988, 12, 9-16.	0.7	20