Frauke Melchior

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2177632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transient deSUMOylation of IRF2BP proteins controls early transcription in EGFR signaling. EMBO Reports, 2021, 22, e49651.	4.5	13
2	The Sumo proteome of proliferating and neuronal-differentiating cells reveals Utf1 among key Sumo targets involved in neurogenesis. Cell Death and Disease, 2021, 12, 305.	6.3	10
3	SCF ^{Fbxw5} targets kinesinâ€13 proteins to facilitate ciliogenesis. EMBO Journal, 2021, 40, e107735.	7.8	12
4	Heat shock transcription factor 1 is SUMOylated in the activated trimeric state. Journal of Biological Chemistry, 2021, 296, 100324.	3.4	15
5	The ubiquitin-like modifier FAT10 interferes with SUMO activation. Nature Communications, 2019, 10, 4452.	12.8	29
6	Hypoxia-induced Changes in SUMO Conjugation Affect Transcriptional Regulation Under Low Oxygen. Molecular and Cellular Proteomics, 2019, 18, 1197-1209.	3.8	20
7	Control of SUMO and Ubiquitin by ROS: Signaling and disease implications. Molecular Aspects of Medicine, 2018, 63, 3-17.	6.4	44
8	Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases. Nature Chemical Biology, 2017, 13, 709-714.	8.0	95
9	IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs. ELife, 2017, 6, .	6.0	22
10	The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nature Communications, 2016, 7, 11482.	12.8	79
11	Reconstitution of the Recombinant RanBP2 SUMO E3 Ligase Complex. Methods in Molecular Biology, 2016, 1475, 41-54.	0.9	2
12	Redox regulation of <scp>SUMO</scp> enzymes is required for <scp>ATM</scp> activity and survival in oxidative stress. EMBO Journal, 2016, 35, 1312-1329.	7.8	35
13	A Stable Chemical SUMO1–Ubc9 Conjugate Specifically Binds as a Thioester Mimic to the RanBP2–E3 Ligase Complex. ChemBioChem, 2015, 16, 1183-1189.	2.6	6
14	Sumoylation of the GTPase Ran by the RanBP2 SUMO E3 Ligase Complex. Journal of Biological Chemistry, 2015, 290, 23589-23602.	3.4	32
15	The Ran GTPase-Activating Protein (RanGAP1) Is Critically Involved in Smooth Muscle Cell Differentiation, Proliferation and Migration following Vascular Injury: Implications for Neointima Formation and Restenosis. PLoS ONE, 2014, 9, e101519.	2.5	13
16	SUMOylation-Dependent LRH-1/PROX1 Interaction Promotes Atherosclerosis by Decreasing Hepatic Reverse Cholesterol Transport. Cell Metabolism, 2014, 20, 603-613.	16.2	73
17	A role for the CB-associated SUMO isopeptidase USPL1 in RNAPII-mediated snRNA transcription. Journal of Cell Science, 2014, 127, 1065-78.	2.0	48
18	Identification and analysis of endogenous SUMO1 and SUMO2/3 targets in mammalian cells and tissues using monoclonal antibodies. Nature Protocols, 2014, 9, 896-909.	12.0	69

#	Article	IF	CITATIONS
19	Exploring the association between genetic variation in the <scp>SUMO</scp> isopeptidase gene <scp><i>USPL1</i></scp> and breast cancer through integration of data from the populationâ€based <scp>GENICA</scp> study and external genetic databases. International Journal of Cancer, 2013, 133, 362-372.	5.1	13
20	SCFFbxw5 mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression. Nature Cell Biology, 2013, 15, 179-188.	10.3	32
21	Detecting endogenous SUMO targets in mammalian cells and tissues. Nature Structural and Molecular Biology, 2013, 20, 525-531.	8.2	188
22	Sumoylation: A Regulatory Protein Modification in Health and Disease. Annual Review of Biochemistry, 2013, 82, 357-385.	11.1	918
23	SUMO unloads the Kap114 cab. EMBO Journal, 2012, 31, 2439-2440.	7.8	1
24	A Novel SUMO1-specific Interacting Motif in Dipeptidyl Peptidase 9 (DPP9) That Is Important for Enzymatic Regulation. Journal of Biological Chemistry, 2012, 287, 44320-44329.	3.4	53
25	Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. Journal of Molecular Cell Biology, 2012, 4, 284-293.	3.3	70
26	In vivo localization and identification of SUMOylated proteins in the brain of His ₆ -HA-SUMO1 knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21122-21127.	7.1	83
27	The RanBP2/RanGAP1â^—SUMO1/Ubc9 Complex Is a Multisubunit SUMO E3 Ligase. Molecular Cell, 2012, 46, 287-298.	9.7	145
28	Ubiquitinâ€specific proteaseâ€like 1 (USPL1) is a SUMO isopeptidase with essential, nonâ€catalytic functions. EMBO Reports, 2012, 13, 930-938.	4.5	143
29	Recombinant Reconstitution of Sumoylation Reactions In Vitro. Methods in Molecular Biology, 2012, 832, 93-110.	0.9	19
30	Importin α/β mediates nuclear import of individual SUMO E1 subunits and of the holo-enzyme. Molecular Biology of the Cell, 2011, 22, 652-660.	2.1	19
31	Sumoylation inhibits \hat{I}_{\pm} -synuclein aggregation and toxicity. Journal of Cell Biology, 2011, 194, 49-60.	5.2	210
32	Sumoylation inhibits a-synuclein aggregation and toxicity. Journal of Experimental Medicine, 2011, 208, i23-i23.	8.5	2
33	Bicaudal D2, Dynein, and Kinesin-1 Associate with Nuclear Pore Complexes and Regulate Centrosome and Nuclear Positioning during Mitotic Entry. PLoS Biology, 2010, 8, e1000350.	5.6	268
34	"ChopNSpice,―a Mass Spectrometric Approach That Allows Identification of Endogenous Small Ubiquitin-like Modifier-conjugated Peptides. Molecular and Cellular Proteomics, 2009, 8, 2664-2675.	3.8	57
35	The Cytoplasmic Peptidase DPP9 Is Rate-limiting for Degradation of Proline-containing Peptides. Journal of Biological Chemistry, 2009, 284, 27211-27219.	3.4	95
36	An In Vitro FRET-Based Assay for the Analysis of SUMO Conjugation and Isopeptidase Cleavage. Methods in Molecular Biology, 2009, 497, 241-251.	0.9	17

#	Article	IF	CITATIONS
37	Performing In Vitro Sumoylation Reactions Using Recombinant Enzymes. Methods in Molecular Biology, 2009, 497, 187-199.	0.9	55
38	SUMO. Nature, 2008, 452, 709-711.	27.8	141
39	Mechanism and Consequences for Paralog-Specific Sumoylation of Ubiquitin-Specific Protease 25. Molecular Cell, 2008, 30, 610-619.	9.7	202
40	The Nup358-RanGAP Complex Is Required for Efficient Importin α/β-dependent Nuclear Import. Molecular Biology of the Cell, 2008, 19, 2300-2310.	2.1	122
41	Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor. Molecular and Cellular Endocrinology, 2007, 268, 20-29.	3.2	46
42	Concepts in sumoylation: a decade on. Nature Reviews Molecular Cell Biology, 2007, 8, 947-956.	37.0	1,526
43	Regulation of SUMOylation by Reversible Oxidation of SUMO Conjugating Enzymes. Molecular Cell, 2006, 21, 349-357.	9.7	323
44	SUMO: regulating the regulator. Cell Division, 2006, 1, 13.	2.4	130
45	SUMOylation of the Corepressor N-CoR Modulates Its Capacity to Repress Transcription. Molecular Biology of the Cell, 2006, 17, 1643-1651.	2.1	51
46	SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nature Structural and Molecular Biology, 2005, 12, 264-269.	8.2	175
47	Quantitative SUMO-1 Modification of a Vaccinia Virus Protein Is Required for Its Specific Localization and Prevents Its Self-Association. Molecular Biology of the Cell, 2005, 16, 2822-2835.	2.1	39
48	A Fluorescence Resonance Energy Transferâ€Based Assay to Study SUMO Modification in Solution. Methods in Enzymology, 2005, 398, 20-32.	1.0	40
49	RanGAP1*SUMO1 is phosphorylated at the onset of mitosis and remains associated with RanBP2 upon NPC disassembly. Journal of Cell Biology, 2004, 164, 965-971.	5.2	58
50	Regulation of Smad4 Sumoylation and Transforming Growth Factor-Î ² Signaling by Protein Inhibitor of Activated STAT1. Journal of Biological Chemistry, 2004, 279, 22857-22865.	3.4	77
51	The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nature Structural and Molecular Biology, 2004, 11, 984-991.	8.2	134
52	Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography. Science, 2004, 306, 1387-1390.	12.6	451
53	SUMO Modification. , 2004, , 130-134.		0
54	SUMO: ligases, isopeptidases and nuclear pores. Trends in Biochemical Sciences, 2003, 28, 612-618.	7.5	355

#	Article	lF	CITATIONS
55	Opposed Regulation of Corepressor CtBP by SUMOylation and PDZ Binding. Molecular Cell, 2003, 11, 1389-1396.	9.7	155
56	Activation of Transforming Growth Factor-Î ² Signaling by SUMO-1 Modification of Tumor Suppressor Smad4/DPC4. Journal of Biological Chemistry, 2003, 278, 18714-18719.	3.4	121
57	CRM1/Ran-Mediated Nuclear Export of p27Kip1Involves a Nuclear Export Signal and Links p27 Export and Proteolysis. Molecular Biology of the Cell, 2003, 14, 201-213.	2.1	174
58	SUMO-1 and p53. Cell Cycle, 2002, 1, 243-247.	2.6	83
59	The Nucleoporin RanBP2 Has SUMO1 E3 Ligase Activity. Cell, 2002, 108, 109-120.	28.9	714
60	Nucleocytoplasmic Transport. Developmental Cell, 2002, 3, 304-306.	7.0	4
61	Ubiquitin-Related Modifier SUMO1 and Nucleocytoplasmic Transport. Traffic, 2002, 3, 381-387.	2.7	156
62	The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO Journal, 2002, 21, 2682-2691.	7.8	284
63	Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO Journal, 2002, 21, 5206-5215.	7.8	234
64	SUMO-1 and p53. Cell Cycle, 2002, 1, 245-9.	2.6	48
65	Ran GTPase cycle: One mechanism — two functions. Current Biology, 2001, 11, R257-R260.	3.9	28
66	PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes and Development, 2001, 15, 3088-3103.	5.9	464
67	Mdm2–SUMO1: is bigger better?. Nature Cell Biology, 2000, 2, E161-E163.	10.3	18
68	SUMO—Nonclassical Ubiquitin. Annual Review of Cell and Developmental Biology, 2000, 16, 591-626.	9.4	702
69	Nuclear Protein Import in a Permeabilized Cell Assay. , 1998, 88, 265-274.		12
70	Two-way trafficking with Ran. Trends in Cell Biology, 1998, 8, 175-179.	7.9	141
71	Structure determination of the small ubiquitin-related modifier SUMO-1. Journal of Molecular Biology, 1998, 280, 275-286.	4.2	356
72	Molecular Characterization of the SUMO-1 Modification of RanGAP1 and Its Role in Nuclear Envelope Association. Journal of Cell Biology, 1998, 140, 259-270.	5.2	255

#	Article	IF	CITATIONS
73	Modification of Ran GTPase-activating Protein by the Small Ubiquitin-related Modifier SUMO-1 Requires Ubc9, an E2-type Ubiquitin-conjugating Enzyme Homologue. Journal of Biological Chemistry, 1998, 273, 6503-6507.	3.4	132
74	RanGTP Targets p97 to RanBP2, a Filamentous Protein Localized at the Cytoplasmic Periphery of the Nuclear Pore Complex. Molecular Biology of the Cell, 1997, 8, 2379-2390.	2.1	131
75	Plant Polyketide Synthases Leading to Stilbenoids Have a Domain Catalyzing Malonyl-CoA:CO2 Exchange, Malonyl-CoA Decarboxylation, and Covalent Enzyme Modification and a Site for Chain Lengthening. Biochemistry, 1997, 36, 8349-8358.	2.5	24
76	A Small Ubiquitin-Related Polypeptide Involved in Targeting RanGAP1 to Nuclear Pore Complex Protein RanBP2. Cell, 1997, 88, 97-107.	28.9	1,125
77	RNA1 Encodes a GTPase-activating Protein Specific for Gsp1p, the Ran/TC4 Homologue of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1995, 270, 11860-11865.	3.4	121
78	GTP hydrolysis by Ran occurs at the nuclear pore complex in an early step of protein import Journal of Cell Biology, 1995, 131, 571-581.	5.2	141
79	[30] Analysis of Ran/TC4 function in nuclear protein import. Methods in Enzymology, 1995, 257, 279-291.	1.0	57
80	Mechanisms of nuclear protein import. Current Opinion in Cell Biology, 1995, 7, 310-318.	5.4	246
81	Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor [published erratum appears in J Cell Biol 1994 Jan;124(1-2):217]. Journal of Cell Biology, 1993, 123, 1649-1659.	5.2	545
82	Phosphorus-carbon bond cleavage at a di-iron centre: synthesis of μ-phosphidomethyl complexes [Fe2(CO)6(μ-CH2PR2)(μ-PR2)] from [Fe2(CO)6(μ-R2PCH2PR2)]. Inorganica Chimica Acta, 1992, 198-200, 2	5 7-2 70.	31
83	Coordinate- and elicitor-dependent expression of stilbene synthase and phenylalanine ammonia-lyase genes in Vitis cv. Optima. Archives of Biochemistry and Biophysics, 1991, 288, 552-557.	3.0	86
84	Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta, 1991, 183, 307-14.	3.2	95
85	Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed inEscherichia coliinto a catalytically active enzyme. FEBS Letters, 1990, 268, 17-20.	2.8	81
86	Phosphorus–carbon bond cleavage at a di-iron centre. Conversion of µ-R2PCH2PR2to µ-R2PCH2and µ-PR2: crystal structures of [Fe2(CO)4(µ-Ph2PCH2)(µ-PPh2)(µ-Me2PCH2PMe2)] and [Fe2(CO)6{µ-PhPCH(Me)P(Ph)(C6H4-O)}]. Journal of the Chemical Society Chemical Communications, 1986, , 540-542.	2.0	36