Jiafeng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176627/publications.pdf Version: 2024-02-01

LIAFENC THANC

#	Article	IF	CITATIONS
1	Models of Shear-Induced Platelet Activation and Numerical Implementation With Computational Fluid Dynamics Approaches. Journal of Biomechanical Engineering, 2022, 144, .	1.3	14
2	Neutrophil dysfunction due to continuous mechanical shear exposure in mechanically assisted circulation in vitro. Artificial Organs, 2022, 46, 83-94.	1.9	3
3	Numerical study of the effect of LVAD inflow cannula positioning on thrombosis risk. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25, 852-860.	1.6	2
4	Computed tomography angiography as an adjunct to computational fluid dynamics for prediction of oxygenator thrombus formation. Perfusion (United Kingdom), 2021, 36, 285-292.	1.0	11
5	Neutrophil injury and function alterations induced by high mechanical shear stress with short exposure time. Artificial Organs, 2021, 45, 577-586.	1.9	7
6	Flow characteristics and hemolytic performance of the new Breethe centrifugal blood pump in comparison with the CentriMag and Rotaflow pumps. International Journal of Artificial Organs, 2021, 44, 829-837.	1.4	14
7	Evaluation of an autoregulatory ECMO system for total respiratory support in an acute ovine model. Artificial Organs, 2020, 44, 478-487.	1.9	7
8	The impact of shear stress on deviceâ€induced platelet hemostatic dysfunction relevant to thrombosis and bleeding in mechanically assisted circulation. Artificial Organs, 2020, 44, E201-E213.	1.9	25
9	Modeling Clot Formation of Shear-Injured Platelets in Flow by a Dissipative Particle Dynamics Method. Bulletin of Mathematical Biology, 2020, 82, 83.	1.9	13
10	Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps. International Journal of Artificial Organs, 2020, 43, 653-662.	1.4	32
11	Impact of high mechanical shear stress and oxygenator membrane surface on blood damage relevant to thrombosis and bleeding in a pediatric ECMO circuit. Artificial Organs, 2020, 44, 717-726.	1.9	35
12	Prediction of mechanical hemolysis in medical devices via a Lagrangian strainâ€based multiscale model. Artificial Organs, 2020, 44, E348-E368.	1.9	20
13	Resveratrol Suppresses Human Nasopharyngeal Carcinoma Cell Growth Via Inhibiting Differentiation Antagonizing Non-Protein Coding RNA (DANCR) Expression. Medical Science Monitor, 2020, 26, e923622.	1.1	7
14	Model-Based Design and Optimization of Blood Oxygenators. Journal of Medical Devices, Transactions of the ASME, 2020, 14, 041001.	0.7	3
15	Evaluation of in vitro hemolysis and platelet activation of a newly developed maglev LVAD and two clinically used LVADs with human blood. Artificial Organs, 2019, 43, 870-879.	1.9	28
16	A novel adaptor system enables endovascular access through extracorporeal life support circuits. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 1359-1366.	0.8	4
17	Deviceâ€induced platelet dysfunction in mechanically assisted circulation increases the risks of thrombosis and bleeding. Artificial Organs, 2019, 43, 745-755.	1.9	31
18	Long non‑coding RNA DANCR promotes nasopharyngeal carcinoma cell proliferation and migration. Molecular Medicine Reports, 2019, 19, 2883-2889.	2.4	6

JIAFENG ZHANG

#	Article	IF	CITATIONS
19	Quantification of Shearâ€Induced Platelet Activation: High Shear Stresses for Short Exposure Time. Artificial Organs, 2015, 39, 576-583.	1.9	57
20	Stimulation of Autophagy Prevents Amyloid-β Peptide-Induced Neuritic Degeneration in PC12 Cells. Journal of Alzheimer's Disease, 2014, 40, 929-939.	2.6	46
21	Comparison and Experimental Validation of Fluid Dynamic Numerical Models for a Clinical Ventricular Assist Device. Artificial Organs, 2013, 37, 380-389.	1.9	48
22	Experimental Validation of Fluid Dynamic Numerical Models in Blood Pump Simulation. , 2012, , .		0
23	A prestressed biomechanical model for the platelet to capture the morphological change from resting to activated. International Journal of Computational Methods, 0, , .	1.3	0