Santiago Gonzalez Gaitan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2174812/publications.pdf

Version: 2024-02-01

76 papers 5,048 citations

32 h-index 71 g-index

77 all docs

77 docs citations

times ranked

77

4693 citing authors

#	Article	IF	CITATIONS
1	SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY. Astrophysical Journal, Supplement Series, 2011, 192, 1.	7.7	672
2	A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 2017, 551, 75-79.	27.8	601
3	The Supernova Legacy Survey 3-year sample: Type la supernovae photometric distances and cosmological constraints. Astronomy and Astrophysics, 2010, 523, A7.	5.1	412
4	SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES. Astrophysical Journal, 2011, 737, 102.	4. 5	370
5	CHARACTERIZING THE <i>V</i> -BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE. Astrophysical Journal, 2014, 786, 67.	4.5	241
6	PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astronomy and Astrophysics, 2015, 579, A40.	5.1	239
7	First Cosmology Results using Type la Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters. Astrophysical Journal Letters, 2019, 872, L30.	8.3	201
8	Results from the Supernova Photometric Classification Challenge. Publications of the Astronomical Society of the Pacific, 2010, 122, 1415-1431.	3.1	130
9	The rise-time of Type II supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2212-2229.	4.4	102
10	A statistical analysis of circumstellar material in Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 222-240.	4.4	100
11	Characterizing the environments of supernovae with MUSE. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4087-4099.	4.4	91
12	Type II Supernova Spectral Diversity. I. Observations, Sample Characterization, and Spectral Line Evolution*. Astrophysical Journal, 2017, 850, 89.	4. 5	87
13	Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC). Publications of the Astronomical Society of the Pacific, 2019, 131, 094501.	3.1	85
14	PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation. Astrophysical Journal, 2018, 855, 107.	4. 5	81
15	UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE. Astronomical Journal, 2016, 151, 33.	4.7	80
16	DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP. Astrophysical Journal Letters, 2016, 818, L8.	8.3	78
17	CONSTRAINING TYPE Ia SUPERNOVAE PROGENITORS FROM THREE YEARS OF SUPERNOVA LEGACY SURVEY DATA. Astrophysical Journal, 2011, 741, 20.	4.5	73
18	Strong near-infrared carbon in the Type Ia supernova iPTF13ebh. Astronomy and Astrophysics, 2015, 578, A9.	5.1	68

#	Article	IF	Citations
19	H _α SPECTRAL DIVERSITY OF TYPE II SUPERNOVAE: CORRELATIONS WITH PHOTOMETRIC PROPERTIES. Astrophysical Journal Letters, 2014, 786, L15.	8.3	62
20	EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY. Astronomical Journal, 2012, 144, 59.	4.7	59
21	An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. Monthly Notices of the Royal Astronomical Society, 2020, 499, 482-504.	4.4	58
22	PESSTO monitoring of SN 2012hn: further heterogeneity among faint Type I supernovaeã~ Monthly Notices of the Royal Astronomical Society, 2014, 437, 1519-1533.	4.4	56
23	A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw. Astronomy and Astrophysics, 2015, 582, A3.	5.1	55
24	SNÂ2011hs: a fast and faint Type IIb supernova from a supergiant progenitor. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1807-1828.	4.4	54
25	Optimizing spectroscopic follow-up strategies for supernova photometric classification with active learning. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2-18.	4.4	51
26	Analysis of blueshifted emission peaks in Type II supernovae. Monthly Notices of the Royal Astronomical Society, 2014, 441, 671-680.	4.4	48
27	Type II Supernova Spectral Diversity. II. Spectroscopic and Photometric Correlations. Astrophysical Journal, 2017, 850, 90.	4.5	48
28	Nebular phase observations of the Type-lb supernova iPTF13bvn favour a binary progenitor. Astronomy and Astrophysics, 2015, 579, A95.	5.1	46
29	Photometric selection of Type Ia supernovae in the Supernova Legacy Survey. Astronomy and Astrophysics, 2011, 534, A43.	5.1	44
30	A <i>HUBBLE</i> DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD. Astrophysical Journal, 2015, 815, 121.	4.5	37
31	On the environments of Type Ia supernovae within host galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 448, 732-753.	4.4	36
32	SUBLUMINOUS TYPE Ia SUPERNOVAE AT HIGH REDSHIFT FROM THE SUPERNOVA LEGACY SURVEY. Astrophysical Journal, 2011, 727, 107.	4.5	33
33	Discovery of Distant RR Lyrae Stars in the Milky Way Using DECam. Astrophysical Journal, 2018, 855, 43.	4.5	33
34	THE RISE TIME OF NORMAL AND SUBLUMINOUS TYPE Ia SUPERNOVAE. Astrophysical Journal, 2012, 745, 44.	4.5	30
35	First Release of High-Redshift Superluminous Supernovae from the Subaru HIgh- <i>Z</i> SUpernova CAmpaign (SHIZUCA). I. Photometric Properties. Astrophysical Journal, Supplement Series, 2019, 241, 16.	7.7	30
36	First Cosmology Results using Supernovae Ia from the Dark Energy Survey: Survey Overview, Performance, and Supernova Spectroscopy. Astronomical Journal, 2020, 160, 267.	4.7	27

#	Article	IF	Citations
37	Observed Type II supernova colours from the Carnegie Supernova Project-I. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4592-4616.	4.4	26
38	Type II supernovae in low-luminosity host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3232-3253.	4.4	26
39	The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. Nature Astronomy, 2018, 2, 574-579.	10.1	26
40	DEFINING PHOTOMETRIC PECULIAR TYPE Ia SUPERNOVAE. Astrophysical Journal, 2014, 795, 142.	4.5	25
41	A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys*. Astrophysical Journal, 2017, 835, 166.	4.5	25
42	SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4233-4243.	4.4	24
43	Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two. Astrophysical Journal, 2018, 854, 37.	4. 5	23
44	Serendipitous Discovery of RR Lyrae Stars in the Leo V Ultra-faint Galaxy. Astrophysical Journal Letters, 2017, 845, L10.	8.3	22
45	Molecular gas in supernova local environments unveiled by EDGE. Monthly Notices of the Royal Astronomical Society, 2017, 468, 628-644.	4.4	21
46	ON THE LIRA LAW AND THE NATURE OF EXTINCTION TOWARD TYPE Ia SUPERNOVAE. Astrophysical Journal, 2013, 772, 19.	4.5	20
47	Type II supernovae from the Carnegie Supernova Project-I. Astronomy and Astrophysics, 2022, 660, A41.	5.1	19
48	EVIDENCE FOR ASYMMETRIC DISTRIBUTION OF CIRCUMSTELLAR MATERIAL AROUND TYPE Ia SUPERNOVAE. Astrophysical Journal Letters, 2012, 754, L21.	8.3	17
49	Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova. Nature Astronomy, 2022, 6, 568-576.	10.1	17
50	The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs. Astronomical Journal, 2018, 156, 186.	4.7	15
51	Continuum Foreground Polarization and Na i Absorption in Type Ia SNe*. Astrophysical Journal, 2017, 836, 88.	4. 5	14
52	Spatial field reconstruction with INLA: application to IFU galaxy data. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3880-3891.	4.4	14
53	The effects of varying colour–luminosity relations on Type Ia supernova science. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4656-4666.	4.4	14
54	SN 2011A: A LOW-LUMINOSITY INTERACTING TRANSIENT WITH A DOUBLE PLATEAU AND STRONG SODIUM ABSORPTION. Astrophysical Journal, 2015, 807, 63.	4. 5	12

#	Article	IF	CITATIONS
55	The Type IIn Supernova SN 2010bt: The Explosion of a Star in Outburst. Astrophysical Journal, 2018, 860, 68.	4.5	12
56	KSP-SN-2016kf: A Long-rising H-rich Type II Supernova with Unusually High ⁵⁶ Ni Mass Discovered in the KMTNet Supernova Program. Astrophysical Journal, 2019, 881, 22.	4.5	12
57	Studying Type II supernovae as cosmological standard candles using the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4860-4892.	4.4	12
58	Optical and Near-infrared Observations of the Nearby SN Ia 2017cbv. Astrophysical Journal, 2020, 904, 14.	4.5	12
59	Supernova 2010ev: A reddened high velocity gradient type la supernova. Astronomy and Astrophysics, 2016, 590, A5.	5.1	11
60	Asteroids' Size Distribution and Colors from HITS. Astronomical Journal, 2020, 159, 148.	4.7	11
61	Tips and tricks in linear imaging polarimetry of extended sources with FORS2 at the VLT. Astronomy and Astrophysics, 2020, 634, A70.	5.1	11
62	Type II supernovae from the Carnegie Supernova Project-I. Astronomy and Astrophysics, 2022, 660, A42.	5.1	11
63	DES15E2mlf: A Spectroscopically Confirmed Superluminous Supernova that Exploded 3.5ÂGyr After the Big Bang. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	10
64	The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. Monthly Notices of the Royal Astronomical Society, 2020, 497, 361-377.	4.4	10
65	Type II supernovae from the Carnegie Supernova Project-I. Astronomy and Astrophysics, 2022, 660, A40.	5.1	9
66	DES16C3cje: A low-luminosity, long-lived supernova. Monthly Notices of the Royal Astronomical Society, 2020, 496, 95-110.	4.4	8
67	SNÂ2017ivv: two years of evolution of a transitional Type II supernova. Monthly Notices of the Royal Astronomical Society, 2020, 499, 974-992.	4.4	7
68	Asteroids in the High Cadence Transient Survey. Astronomical Journal, 2018, 155, 135.	4.7	6
69	Rapidly Declining Hostless Type Ia Supernova KSP-OT-201509b from the KMTNet Supernova Program: Transitional Nature and Constraint on ⁵⁶ Ni Distribution and Progenitor Type. Astrophysical Journal, 2021, 910, 151.	4.5	6
70	SEARCHING FOR LIGHT ECHOES DUE TO CIRCUMSTELLAR MATTER IN SNe la SPECTRA. Astrophysical Journal, 2015, 806, 134.	4.5	5
71	Elemental gas-phase abundances of intermediate redshift type la supernova star-forming host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 307-322.	4.4	5
72	Understanding the extreme luminosity of DES14X2fna. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3950-3967.	4.4	4

#	Article	IF	CITATIONS
73	Aperture-corrected spectroscopic type la supernova host galaxy properties. Astronomy and Astrophysics, 2022, 659, A89.	5.1	4
74	Systematic errors on optical-SED stellar-mass estimates for galaxies across cosmic time and their impact on cosmology. Astronomy and Astrophysics, 2022, 662, A86.	5.1	3
75	Active learning with RESSPECT: Resource allocation for extragalactic astronomical transients. , 2020, , .		1
76	Photometric typing of normal and peculiar type Ia supernovae. Proceedings of the International Astronomical Union, 2014, 10, 333-336.	0.0	0