List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2174465/publications.pdf Version: 2024-02-01

OWEN I SANSOM

#	Article	IF	CITATIONS
1	Aberrant Expression and Subcellular Localization of ECT2 Drives Colorectal Cancer Progression and Growth. Cancer Research, 2022, 82, 90-104.	0.9	19
2	Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop. Cell Death and Disease, 2022, 13, 168.	6.3	6
3	Targeting ligand-dependent wnt pathway dysregulation in gastrointestinal cancers through porcupine inhibition. , 2022, 238, 108179.		11
4	Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene, 2022, 41, 2811-2823.	5.9	10
5	Cyclocreatine Suppresses Creatine Metabolism and Impairs Prostate Cancer Progression. Cancer Research, 2022, 82, 2565-2575.	0.9	12
6	Retrograde movements determine effective stem cell numbers in the intestine. Nature, 2022, 607, 548-554.	27.8	26
7	Biological Misinterpretation of Transcriptional Signatures in Tumor Samples Can Unknowingly Undermine Mechanistic Understanding and Faithful Alignment with Preclinical Data. Clinical Cancer Research, 2022, 28, 4056-4069.	7.0	14
8	eEF2K activity is required for the phenotypes of the Rpl24 mouse. Journal of Investigative Dermatology, 2022, , .	0.7	0
9	The RAC1 Target NCKAP1 Plays a Crucial Role in the Progression of Braf;Pten-Driven Melanoma in Mice. Journal of Investigative Dermatology, 2021, 141, 628-637.e15.	0.7	8
10	Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology, 2021, 160, 362-377.e13.	1.3	90
11	Aspirin Rescues Wnt-Driven Stem-like Phenotype in Human Intestinal Organoids and Increases the Wnt Antagonist Dickkopf-1. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 465-489.	4.5	15
12	Expression of R-Spondin 1 in Apc Mice Suppresses Growth of Intestinal Adenomas by Altering Wnt and Transforming Growth Factor Beta Signaling. Gastroenterology, 2021, 160, 245-259.	1.3	21
13	MNK Inhibition Sensitizes <i>KRAS</i> -Mutant Colorectal Cancer to mTORC1 Inhibition by Reducing eIF4E Phosphorylation and c-MYC Expression. Cancer Discovery, 2021, 11, 1228-1247.	9.4	45
14	Tuning protein synthesis for cancer therapy. Molecular and Cellular Oncology, 2021, 8, 1884034.	0.7	7
15	Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers, 2021, 13, 1000.	3.7	20
16	PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene, 2021, 40, 2355-2366.	5.9	41
17	Loss of autophagy affects melanoma development in a manner dependent on PTEN status. Cell Death and Differentiation, 2021, 28, 1437-1439.	11.2	10
18	CRISPR activation screen in mice identifies novel membrane proteins enhancing pulmonary metastatic colonisation. Communications Biology, 2021, 4, 395.	4.4	12

#	Article	IF	CITATIONS
19	RAC1B modulates intestinal tumourigenesis via modulation of WNT and EGFR signalling pathways. Nature Communications, 2021, 12, 2335.	12.8	20
20	Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma Determine Response to SLC7A11 Inhibition. Cancer Research, 2021, 81, 3461-3479.	0.9	62
21	Phenotypic plasticity underlies local invasion and distant metastasis in colon cancer. ELife, 2021, 10, .	6.0	38
22	Pre-clinical modelling of rectal cancer to develop novel radiotherapy-based treatment strategies. Oncology Reviews, 2021, 15, 511.	1.8	4
23	Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nature Communications, 2021, 12, 3414.	12.8	65
24	Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis. Nature Communications, 2021, 12, 3464.	12.8	33
25	RAL GTPases mediate EGFR-driven intestinal stem cell proliferation and tumourigenesis. ELife, 2021, 10, .	6.0	13
26	Notch-IGF1 signaling during liver regeneration drives biliary epithelial cell expansion and inhibits hepatocyte differentiation. Science Signaling, 2021, 14, .	3.6	17
27	NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature, 2021, 594, 430-435.	27.8	122
28	BCL-XL is crucial for progression through the adenoma-to-carcinoma sequence of colorectal cancer. Cell Death and Differentiation, 2021, 28, 3282-3296.	11.2	28
29	EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Current Biology, 2021, 31, 2550-2560.e5.	3.9	32
30	Genetic Screens Identify a Context-Specific PI3K/p27Kip1 Node Driving Extrahepatic Biliary Cancer. Cancer Discovery, 2021, 11, 3158-3177.	9.4	12
31	The pathogenesis of mesothelioma is driven by a dysregulated translatome. Nature Communications, 2021, 12, 4920.	12.8	20
32	Optimizing metastatic-cascade-dependent Rac1 targeting in breast cancer: Guidance using optical window intravital FRET imaging. Cell Reports, 2021, 36, 109689.	6.4	12
33	Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 2021, 7, eabh0363.	10.3	23
34	The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nature Genetics, 2021, 53, 16-26.	21.4	114
35	Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nature Communications, 2021, 12, 366.	12.8	138
36	A RAC-GEF network critical for early intestinal tumourigenesis. Nature Communications, 2021, 12, 56.	12.8	11

#	Article	IF	CITATIONS
37	Translation initiation in cancer at a glance. Journal of Cell Science, 2021, 134, .	2.0	28
38	LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency. Med, 2021, 2, 1231-1252.e10.	4.4	19
39	Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas. Science Advances, 2021, 7, eabj0512.	10.3	6
40	Rpl24Bst mutation suppresses colorectal cancer by promoting eEF2 phosphorylation via eEF2K. ELife, 2021, 10, .	6.0	15
41	Activation of β-Catenin Cooperates with Loss of Pten to Drive AR-Independent Castration-Resistant Prostate Cancer. Cancer Research, 2020, 80, 576-590.	0.9	26
42	WNT and β-Catenin in Cancer: Genes and Therapy. Annual Review of Cancer Biology, 2020, 4, 177-196.	4.5	39
43	Calorie Restriction Increases the Number of Competing Stem Cells and Decreases Mutation Retention in the Intestine. Cell Reports, 2020, 32, 107937.	6.4	36
44	Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis. Nature Cancer, 2020, 1, 976-989.	13.2	69
45	RALB GTPase: a critical regulator of DR5 expression and TRAIL sensitivity in KRAS mutant colorectal cancer. Cell Death and Disease, 2020, 11, 930.	6.3	12
46	Universal Sample Preparation Unlocking Multimodal Molecular Tissue Imaging. Analytical Chemistry, 2020, 92, 11080-11088.	6.5	64
47	MCL1 Is Required for Maintenance of Intestinal Homeostasis and Prevention of Carcinogenesis in Mice. Gastroenterology, 2020, 159, 183-199.	1.3	22
48	Repression of the Type I Interferon Pathway Underlies MYC- and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. Cancer Discovery, 2020, 10, 872-887.	9.4	102
49	Macropinocytosis Renders a Subset of Pancreatic Tumor Cells Resistant to mTOR Inhibition. Cell Reports, 2020, 30, 2729-2742.e4.	6.4	28
50	Non-canonical Wnt signalling regulates scarring in biliary disease via the planar cell polarity receptors. Nature Communications, 2020, 11, 445.	12.8	31
51	Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nature Communications, 2020, 11, 499.	12.8	42
52	Control of translation elongation in health and disease. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	62
53	CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nature Communications, 2019, 10, 3637.	12.8	170
54	A MYC–GCN2–eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nature Cell Biology, 2019, 21, 1413-1424.	10.3	65

#	Article	IF	CITATIONS
55	mTORC1 activity is essential for erythropoiesis and B cell lineage commitment. Scientific Reports, 2019, 9, 16917.	3.3	7
56	Epithelial NOTCH Signaling Rewires the Tumor Microenvironment of Colorectal Cancer to Drive Poor-Prognosis Subtypes and Metastasis. Cancer Cell, 2019, 36, 319-336.e7.	16.8	278
57	Hypoxic cancer–associated fibroblasts increase NCBP2-AS2/HIAR to promote endothelial sprouting through enhanced VEGF signaling. Science Signaling, 2019, 12, .	3.6	83
58	A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors. Scientific Reports, 2019, 9, 201.	3.3	38
59	Non-canonical HIF-1 stabilization contributes to intestinal tumorigenesis. Oncogene, 2019, 38, 5670-5685.	5.9	26
60	RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes. Cell Stem Cell, 2019, 24, 592-607.e7.	11.1	32
61	Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death and Differentiation, 2019, 26, 2535-2550.	11.2	10
62	Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer. Nature Communications, 2019, 10, 723.	12.8	64
63	AKT/mTORC2 Inhibition Activates FOXO1 Function in CLL Cells Reducing B-Cell Receptor-Mediated Survival. Clinical Cancer Research, 2019, 25, 1574-1587.	7.0	19
64	Preclinical Evaluation of AZ12601011 and AZ12799734, Inhibitors of Transforming Growth Factor <i>l²</i> Superfamily Type 1 Receptors. Molecular Pharmacology, 2019, 95, 222-234.	2.3	20
65	Activation of PP2A and Inhibition of mTOR Synergistically Reduce MYC Signaling and Decrease Tumor Growth in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2019, 79, 209-219.	0.9	56
66	Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018, 359, 920-926.	12.6	1,199
67	Loss of Nâ€WASP drives early progression in an <i>Apc</i> model of intestinal tumourigenesis. Journal of Pathology, 2018, 245, 337-348.	4.5	11
68	Role of Wnt signalling in advanced prostate cancer. Journal of Pathology, 2018, 245, 3-5.	4.5	24
69	CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype. Cell Reports, 2018, 23, 1448-1460.	6.4	169
70	Sprouty2 lossâ€induced IL 6 drives castrationâ€resistant prostate cancer through scavenger receptor B1. EMBO Molecular Medicine, 2018, 10, .	6.9	19
71	Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells. Nature Communications, 2018, 9, 1132.	12.8	63
72	Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut, 2018, 67, 2142-2155.	12.1	100

#	Article	IF	CITATIONS
73	Mannose impairs tumour growth and enhances chemotherapy. Nature, 2018, 563, 719-723.	27.8	282
74	Systems level expression correlation of Ras GTPase regulators. Cell Communication and Signaling, 2018, 16, 46.	6.5	4
75	The role of mTOR-mediated signals during haemopoiesis and lineage commitment. Biochemical Society Transactions, 2018, 46, 1313-1324.	3.4	12
76	STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap. Nature Communications, 2018, 9, 2124.	12.8	45
77	MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus. Cell Death and Disease, 2018, 9, 644.	6.3	21
78	Intestinal Stem Cell Dynamics: A Story of Mice and Humans. Cell Stem Cell, 2018, 22, 785-787.	11.1	5
79	GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine. Oncogene, 2018, 37, 6368-6382.	5.9	77
80	<i>FGFR3</i> mutation increases bladder tumourigenesis by suppressing acute inflammation. Journal of Pathology, 2018, 246, 331-343.	4.5	33
81	Cancer cell adaptation to hypoxia involves a HIFâ€GPRC5A‥AP axis. EMBO Molecular Medicine, 2018, 10, .	6.9	72
82	TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Science Translational Medicine, 2018, 10, .	12.4	161
83	<i> <scp>HUWE</scp> 1 </i> is a critical colonic tumour suppressor gene that prevents <scp>MYC</scp> signalling, <scp>DNA</scp> damage accumulation and tumour initiation. EMBO Molecular Medicine, 2017, 9, 181-197.	6.9	63
84	The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes and Development, 2017, 31, 172-183.	5.9	471
85	Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2357-E2364.	7.1	198
86	PTEN deficiency permits the formation of pancreatic cancer in the absence of autophagy. Cell Death and Differentiation, 2017, 24, 1303-1304.	11.2	23
87	TIAM1 Antagonizes TAZ/YAP Both in the Destruction Complex in the Cytoplasm and in the Nucleus to Inhibit Invasion of Intestinal Epithelial Cells. Cancer Cell, 2017, 31, 621-634.e6.	16.8	73
88	Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature, 2017, 544, 372-376.	27.8	449
89	TGFÎ ² pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis. Cell Death and Differentiation, 2017, 24, 1681-1693.	11.2	48
90	Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 2017, 9, .	12.4	208

#	Article	IF	CITATIONS
91	Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion. Nature Communications, 2017, 8, 14646.	12.8	42
92	Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature, 2017, 541, 233-236.	27.8	194
93	The Wae to repair: prostaglandin E2 (PGE ₂) triggers intestinal wound repair. EMBO Journal, 2017, 36, 3-4.	7.8	9
94	<scp>PD</scp> ‣1 blockade enhances response of pancreatic ductal adenocarcinoma to radiotherapy. EMBO Molecular Medicine, 2017, 9, 167-180.	6.9	172
95	Analysis of Nkx3.1:Cre-driven Erk5 deletion reveals a profound spinal deformity which is linked to increased osteoclast activity. Scientific Reports, 2017, 7, 13241.	3.3	9
96	A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts. Cell Reports, 2017, 21, 274-288.	6.4	83
97	Loss of TGF-β signaling drives cSCC from skin stem cells – More evidence. Cell Cycle, 2017, 16, 386-387.	2.6	6
98	MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nature Communications, 2017, 8, 1728.	12.8	83
99	Hypermutation In Pancreatic Cancer. Gastroenterology, 2017, 152, 68-74.e2.	1.3	174
100	Intestinal stem cell overproliferation resulting from inactivation of the APC tumor suppressor requires the transcription cofactors Earthbound and Erect wing. PLoS Genetics, 2017, 13, e1006870.	3.5	20
101	<i>Sleeping Beauty</i> screen reveals <i>Pparg</i> activation in metastatic prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8290-8295.	7.1	91
102	Functional exploration of colorectal cancer genomes using Drosophila. Nature Communications, 2016, 7, 13615.	12.8	82
103	Loss of P53 Function Activates JAK2–STAT3 Signaling to Promote Pancreatic Tumor Growth, Stroma Modification, andÂGemcitabine Resistance in Mice and Is Associated WithÂPatient Survival. Gastroenterology, 2016, 151, 180-193.e12.	1.3	211
104	Notch3 drives development and progression of cholangiocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12250-12255.	7.1	68
105	Mouse models of intestinal cancer. Journal of Pathology, 2016, 238, 141-151.	4.5	109
106	The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biology Open, 2016, 5, 1371-1379.	1.2	44
107	mTORC2 Signaling Drives the Development and Progression of Pancreatic Cancer. Cancer Research, 2016, 76, 6911-6923.	0.9	63
108	Inactivation of TGFÎ ² receptors in stem cells drives cutaneous squamous cell carcinoma. Nature Communications, 2016, 7, 12493.	12.8	81

#	Article	IF	CITATIONS
109	CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2016, 29, 832-845.	16.8	645
110	The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis. Current Biology, 2016, 26, 755-765.	3.9	57
111	Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine. Genes and Development, 2016, 30, 52-63.	5.9	87
112	Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue. Cell Reports, 2016, 14, 152-167.	6.4	54
113	Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531, 47-52.	27.8	2,700
114	Eâ€cadherin can limit the transforming properties of activating βâ€catenin mutations. EMBO Journal, 2015, 34, 2321-2333.	7.8	83
115	Targeting the <scp>LOX</scp> / <scp>hypoxia</scp> axis reverses many of the features that make pancreatic cancer deadly: inhibition of <scp>LOX</scp> abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 2015, 7, 1063-1076.	6.9	223
116	Frizzled7 Functions as a Wnt Receptor in Intestinal Epithelial Lgr5+ Stem Cells. Stem Cell Reports, 2015, 4, 759-767.	4.8	114
117	Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nature Cell Biology, 2015, 17, 971-983.	10.3	374
118	Targeting Translation Initiation Bypasses Signaling Crosstalk Mechanisms That Maintain High MYC Levels in Colorectal Cancer. Cancer Discovery, 2015, 5, 768-781.	9.4	86
119	GEMMs as preclinical models for testing pancreatic cancer therapies. DMM Disease Models and Mechanisms, 2015, 8, 1185-1200.	2.4	92
120	A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nature Communications, 2015, 6, 8093.	12.8	58
121	Serine 62-Phosphorylated MYC Associates with Nuclear Lamins and Its Regulation by CIP2A Is Essential for Regenerative Proliferation. Cell Reports, 2015, 12, 1019-1031.	6.4	50
122	Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nature Medicine, 2015, 21, 62-70.	30.7	213
123	mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature, 2015, 517, 497-500.	27.8	257
124	WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. Journal of Clinical Investigation, 2015, 125, 1269-1285.	8.2	215
125	Integrated \hat{I}^2 -catenin, BMP, PTEN, and Notch signalling patterns the nephron. ELife, 2015, 4, e04000.	6.0	86
126	Functions of TAp63 and p53 in restraining the development of metastatic cancer. Oncogene, 2014, 33, 3325-3333.	5.9	30

#	Article	IF	CITATIONS
127	Fibroblast growth factor receptor 3 activation plays a causative role in urothelial cancer pathogenesis in cooperation with <i>Pten</i> loss in mice. Journal of Pathology, 2014, 233, 148-158.	4.5	23
128	Targeting mTOR dependency in pancreatic cancer. Gut, 2014, 63, 1481-1489.	12.1	107
129	PROX1 Promotes Metabolic Adaptation and Fuels Outgrowth of Wnt high Metastatic Colon Cancer Cells. Cell Reports, 2014, 8, 1957-1973.	6.4	66
130	The Rac-FRET Mouse Reveals Tight Spatiotemporal Control of Rac Activity in Primary Cells and Tissues. Cell Reports, 2014, 6, 1153-1164.	6.4	79
131	Fascin Is Regulated by Slug, Promotes Progression of Pancreatic Cancer in Mice, and Is Associated With Patient Outcomes. Gastroenterology, 2014, 146, 1386-1396.e17.	1.3	100
132	Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo. Cell Death and Differentiation, 2014, 21, 956-966.	11.2	78
133	Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature, 2014, 511, 483-487.	27.8	392
134	c-Src drives intestinal regeneration and transformation. EMBO Journal, 2014, 33, 1474-91.	7.8	56
135	p53 status determines the role of autophagy in pancreatic tumour development. Nature, 2013, 504, 296-300.	27.8	614
136	Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties. Cell, 2013, 152, 25-38.	28.9	889
137	Senescence Sensitivity of Breast Cancer Cells Is Defined by Positive Feedback Loop between CIP2A and E2F1. Cancer Discovery, 2013, 3, 182-197.	9.4	117
138	A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 2013, 15, 978-990.	10.3	1,566
139	ROS Production and NF-l®B Activation Triggered by RAC1 Facilitate WNT-Driven Intestinal Stem Cell Proliferation and Colorectal Cancer Initiation. Cell Stem Cell, 2013, 12, 761-773.	11.1	340
140	Rac1 drives intestinal stem cell proliferation and regeneration. Cell Cycle, 2013, 12, 2973-2977.	2.6	25
141	Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene, 2013, 32, 1252-1265.	5.9	162
142	Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6542-6547.	7.1	140
143	Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression. Journal of Clinical Investigation, 2013, 123, 1157-1175.	8.2	75
144	Activated Mutant NRasQ61K Drives Aberrant Melanocyte Signaling, Survival, and Invasiveness via a Rac1-Dependent Mechanism. Journal of Investigative Dermatology, 2012, 132, 2610-2621.	0.7	55

#	Article	IF	CITATIONS
145	Exploring molecular genetics of bladder cancer: lessons learned from mouse models. DMM Disease Models and Mechanisms, 2012, 5, 323-32.	2.4	40
146	MicroRNA Molecular Profiles Associated with Diagnosis, Clinicopathologic Criteria, and Overall Survival in Patients with Resectable Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2012, 18, 534-545.	7.0	192
147	The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent â€~+4' cell markers. EMBO Journal, 2012, 31, 3079-3091.	7.8	634
148	Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nature Medicine, 2012, 18, 572-579.	30.7	624
149	SPRY2 loss enhances ErbB trafficking and PI3K/AKT signalling to drive human and mouse prostate carcinogenesis. EMBO Molecular Medicine, 2012, 4, 776-790.	6.9	46
150	Wnt signalling and its role in stem cellâ€driven intestinal regeneration and hyperplasia. Acta Physiologica, 2012, 204, 137-143.	3.8	42
151	Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. Journal of Clinical Investigation, 2012, 122, 3127-3144.	8.2	311
152	Absolute requirement for STAT3 function in small-intestine crypt stem cell survival. Cell Death and Differentiation, 2011, 18, 1934-1943.	11.2	55
153	Rac1 Drives Melanoblast Organization during Mouse Development by Orchestrating Pseudopod- Driven Motility and Cell-Cycle Progression. Developmental Cell, 2011, 21, 722-734.	7.0	98
154	Activation of the PIK3CA/AKT Pathway Suppresses Senescence Induced by an Activated RAS Oncogene to Promote Tumorigenesis. Molecular Cell, 2011, 42, 36-49.	9.7	179
155	Mutant K-Ras Activation of the Proapoptotic MST2 Pathway Is Antagonized by Wild-Type K-Ras. Molecular Cell, 2011, 44, 893-906.	9.7	127
156	P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nature Communications, 2011, 2, 555.	12.8	152
157	HER2 overcomes PTEN (loss)-induced senescence to cause aggressive prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16392-16397.	7.1	51
158	<i>K-Ras</i> and <i>β-catenin</i> mutations cooperate with <i>Fgfr3</i> mutations in mice to promote tumorigenesis in the skin and lung, but not in the bladder. DMM Disease Models and Mechanisms, 2011, 4, 548-555.	2.4	42
159	Spatial Regulation of RhoA Activity during Pancreatic Cancer Cell Invasion Driven by Mutant p53. Cancer Research, 2011, 71, 747-757.	0.9	127
160	Tiam1-Rac Signaling Counteracts Eg5 during Bipolar Spindle Assembly to Facilitate Chromosome Congression. Current Biology, 2010, 20, 669-675.	3.9	51
161	p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium. EMBO Molecular Medicine, 2010, 2, 472-486.	6.9	35
162	Defining the role of APC in the mitotic spindle checkpoint in vivo: APC-deficient cells are resistant to Taxol. Oncogene, 2010, 29, 6418-6427.	5.9	29

#	Article	IF	CITATIONS
163	Myc heterozygosity attenuates the phenotypes of APC deficiency in the small intestine. Oncogene, 2010, 29, 2585-2590.	5.9	40
164	Cyclin D2–Cyclin-Dependent Kinase 4/6 Is Required for Efficient Proliferation and Tumorigenesis following Apc Loss. Cancer Research, 2010, 70, 8149-8158.	0.9	79
165	Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 246-251.	7.1	530
166	Genetic Dissection of Differential Signaling Threshold Requirements for the Wnt/β-Catenin Pathway In Vivo. PLoS Genetics, 2010, 6, e1000816.	3.5	81
167	Dasatinib Inhibits the Development of Metastases in a Mouse Model of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2010, 139, 292-303.	1.3	123
168	Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling. Developmental Cell, 2010, 19, 259-269.	7.0	176
169	Peptide Combinatorial Libraries Identify TSC2 as a Death-associated Protein Kinase (DAPK) Death Domain-binding Protein and Reveal a Stimulatory Role for DAPK in mTORC1 Signaling. Journal of Biological Chemistry, 2009, 284, 334-344.	3.4	68
170	Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 2009, 457, 608-611.	27.8	1,883
171	Mutant p53 Drives Invasion by Promoting Integrin Recycling. Cell, 2009, 139, 1327-1341.	28.9	694
172	Epithelial Pten is dispensable for intestinal homeostasis but suppresses adenoma development and progression after Apc mutation. Nature Genetics, 2008, 40, 1436-1444.	21.4	101
173	B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18919-18923.	7.1	66
174	Myc deletion rescues Apc deficiency in the small intestine. Nature, 2007, 446, 676-679.	27.8	530
175	Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14122-14127.	7.1	181
176	Rapid Loss of Intestinal Crypts upon Conditional Deletion of the Wnt/Tcf-4 Target Gene c- Myc. Molecular and Cellular Biology, 2006, 26, 8418-8426.	2.3	224
177	Brca2 deficiency in the murine small intestine sensitizes to p53-dependent apoptosis and leads to the spontaneous deletion of stem cells. Oncogene, 2005, 24, 3842-3846.	5.9	24
178	Cyclin D1 Is Not an Immediate Target of β-Catenin following Apc Loss in the Intestine. Journal of Biological Chemistry, 2005, 280, 28463-28467.	3.4	92
179	Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes and Development, 2004, 18, 1385-1390.	5.9	700
180	Inducible cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of β-catenin. Gastroenterology, 2004, 126, 1236-1246.	1.3	308