
Shohei Takuno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2173714/publications.pdf Version: 2024-02-01

SHOHEL TAKUNO

#	Article	IF	CITATIONS
1	<scp>QTL</scp> â€seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of <scp>DNA</scp> from two bulked populations. Plant Journal, 2013, 74, 174-183.	5.7	1,065
2	The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nature Genetics, 2013, 45, 831-835.	21.4	374
3	Body-Methylated Genes in Arabidopsis thaliana Are Functionally Important and Evolve Slowly. Molecular Biology and Evolution, 2012, 29, 219-227.	8.9	222
4	Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1797-1802.	7.1	206
5	Artificial selection for a green revolution gene during <i>japonica</i> rice domestication. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11034-11039.	7.1	179
6	Evolutionary patterns of genic DNA methylation vary across land plants. Nature Plants, 2016, 2, 15222.	9.3	178
7	The Patterns and Causes of Variation in Plant Nucleotide Substitution Rates. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 245-266.	8.3	136
8	From Many, One: Genetic Control of Prolificacy during Maize Domestication. PLoS Genetics, 2013, 9, e1003604.	3.5	111
9	Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana. Nucleic Acids Research, 2015, 43, 3911-3921.	14.5	86
10	Independent Molecular Basis of Convergent Highland Adaptation in Maize. Genetics, 2015, 200, 1297-1312.	2.9	67
11	Lowly Expressed Genes in Arabidopsis thaliana Bear the Signature of Possible Pseudogenization by Promoter Degradation. Molecular Biology and Evolution, 2011, 28, 1193-1203.	8.9	59
12	Phylogenetic relationships among cultivated types of Brassica rapa L. em. Metzg. as revealed by AFLP analysis. Genetic Resources and Crop Evolution, 2007, 54, 279-285.	1.6	45
13	Population Genomics of the Fission Yeast Schizosaccharomyces pombe. PLoS ONE, 2014, 9, e104241.	2.5	44
14	Effects of Recombination on Hitchhiking Diversity in the Brassica Self-incompatibility Locus Complex. Genetics, 2007, 177, 949-958.	2.9	42
15	Population Genomics in Bacteria: A Case Study of Staphylococcus aureus. Molecular Biology and Evolution, 2012, 29, 797-809.	8.9	37
16	Preservation of a Pseudogene by Gene Conversion and Diversifying Selection. Genetics, 2008, 180, 517-531.	2.9	34
17	The Power of QTL Mapping with RILs. PLoS ONE, 2012, 7, e46545.	2.5	33
18	Single-cell expression noise and gene-body methylation in Arabidopsis thaliana. Heredity, 2019, 123, 81-91.	2.6	30

Shohei Takuno

#	Article	IF	CITATIONS
19	Identical sets of methylated and nonmethylated genes in Ciona intestinalis sperm and muscle cells. Epigenetics and Chromatin, 2013, 6, 38.	3.9	29
20	The Evolutionary Dynamics of Orthologs That Shift in Gene Body Methylation between Arabidopsis Species. Molecular Biology and Evolution, 2017, 34, 1479-1491.	8.9	29
21	Genome-wide characterization of DNA methylation, small RNA expression, and histone H3 lysine nine di-methylation in <i>Brassica rapa</i> L. DNA Research, 2018, 25, 511-520.	3.4	25
22	CG Methylation Covaries with Differential Gene Expression between Leaf and Floral Bud Tissues of Brachypodium distachyon. PLoS ONE, 2016, 11, e0150002.	2.5	25
23	Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genetics, 2020, 16, e1008637.	3.5	23
24	Recent Retrotransposon Insertions Are Methylated and Phylogenetically Clustered in Japonica Rice (Oryza sativa spp. japonica). Molecular Biology and Evolution, 2012, 29, 3193-3203.	8.9	22
25	A role for palindromic structures in the <i>cis</i> -region of maize Sirevirus LTRs in transposable element evolution and host epigenetic response. Genome Research, 2016, 26, 226-237.	5.5	22
26	Simple and efficient methods for S genotyping and S screening in genus Brassica by dot-blot analysis. Molecular Breeding, 2011, 28, 1-12.	2.1	19
27	Evolution of complexity in miRNA-mediated gene regulation systems. Trends in Genetics, 2008, 24, 56-59.	6.7	14
28	Selection Fine-Tunes the Expression of MicroRNA Target Genes in Arabidopsis thaliana. Molecular Biology and Evolution, 2011, 28, 2429-2434.	8.9	11
29	Comparative Analyses Identify the Contributions of Exotic Donors to Disease Resistance in a Barley Experimental Population. G3: Genes, Genomes, Genetics, 2013, 3, 1945-1953.	1.8	11
30	Selection to Maintain Paralogous Amino Acid Differences Under the Pressure of Gene Conversion in the Heat-Shock Protein Genes in Yeast. Molecular Biology and Evolution, 2009, 26, 2655-2659.	8.9	9
31	QTL Map Meets Population Genomics: An Application to Rice. PLoS ONE, 2013, 8, e83720.	2.5	9
32	The pattern of amplification and differentiation of Ty1-copia and Ty3-gypsy retrotransposons in Brassicaceae species. Genes and Genetic Systems, 2008, 83, 13-22.	0.7	8
33	Coalescent framework for prokaryotes undergoing interspecific homologous recombination. Heredity, 2018, 120, 474-484.	2.6	6
34	Modeling evolutionary growth of a microRNA-mediated regulation system. Journal of Theoretical Biology, 2012, 311, 54-65.	1.7	2