
MarÃ-a Isabel GonzÃ;lez-Siso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2173585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactivity of a Recombinant Esterase from Thermus thermophilus HB27 in Aqueous and Organic Media. Microorganisms, 2022, 10, 915.	3.6	1
2	Bioprospecting for Thermozymes and Characterization of a Novel Lipolytic Thermozyme Belonging to the SGNH/GDSL Family of Hydrolases. International Journal of Molecular Sciences, 2022, 23, 5733.	4.1	1
3	Characterization of a novel thermophilic metagenomic GH5 endoglucanase heterologously expressed in Escherichia coli and Saccharomyces cerevisiae. , 2022, 15, .		4
4	Exploring the taxonomical and functional profile of As Burgas hot spring focusing on thermostable β-galactosidases. Scientific Reports, 2021, 11, 101.	3.3	11
5	Biochemical and Structural Characterization of a novel thermophilic esterase EstD11 provide catalytic insights for the HSL family. Computational and Structural Biotechnology Journal, 2021, 19, 1214-1232.	4.1	17
6	Microbial diversity analysis and screening for novel xylanase enzymes from the sediment of the Lobios Hot Spring in Spain. Scientific Reports, 2019, 9, 11195.	3.3	37
7	Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides. Microbial Cell Factories, 2019, 18, 172.	4.0	20
8	Structural determination of Enzyme-Graphene Nanocomposite Sensor Material. Scientific Reports, 2019, 9, 15519.	3.3	3
9	Bioconversion of Beet Molasses to Alpha-Galactosidase and Ethanol. Frontiers in Microbiology, 2019, 10, 405.	3.5	22
10	Editorial for the Special Issue: Thermophiles and Thermozymes. Microorganisms, 2019, 7, 62.	3.6	5
11	lxr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin. Scientific Reports, 2018, 8, 3090.	3.3	11
12	Heat-Loving β-Galactosidases from Cultured and Uncultured Microorganisms. Current Protein and Peptide Science, 2018, 19, 1224-1234.	1.4	4
13	Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase. Microbial Cell Factories, 2018, 17, 137.	4.0	16
14	Advances of Functional Metagenomics in Harnessing Thermozymes. , 2018, , 289-307.		3
15	Production and Characterization of an Extracellular Acid Protease from Thermophilic Brevibacillus sp. OA30 Isolated from an Algerian Hot Spring. Microorganisms, 2018, 6, 31.	3.6	13
16	Cellulases from Thermophiles Found by Metagenomics. Microorganisms, 2018, 6, 66.	3.6	46
17	Rational mutagenesis by engineering disulphide bonds improves Kluyveromyces lactis beta-galactosidase for high-temperature industrial applications. Scientific Reports, 2017, 7, 45535.	3.3	24

Archaeal Biocommunication in Hot Springs Revealed by Metagenomics. , 2017, , 85-101.

0

#	Article	IF	CITATIONS
19	Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Applied Microbiology and Biotechnology, 2017, 101, 6969-6980.	3.6	57
20	Extremophilic Esterases for Bioprocessing of Lignocellulosic Feedstocks. , 2017, , 205-223.		0
21	Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Frontiers in Microbiology, 2016, 7, 1521.	3.5	98
22	Kluyveromyces marxianus as a host for heterologous protein synthesis. Applied Microbiology and Biotechnology, 2016, 100, 6193-6208.	3.6	49
23	Thermus thermophilus as a Source of Thermostable Lipolytic Enzymes. Microorganisms, 2015, 3, 792-808.	3.6	13
24	Metagenomics of an Alkaline Hot Spring in Galicia (Spain): Microbial Diversity Analysis and Screening for Novel Lipolytic Enzymes. Frontiers in Microbiology, 2015, 6, 1291.	3.5	54
25	Improved bioethanol production in an engineered K luyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI 1. Microbial Biotechnology, 2015, 8, 319-330.	4.2	15
26	Biobutanol from cheese whey. Microbial Cell Factories, 2015, 14, 27.	4.0	35
27	KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis. Fungal Genetics and Biology, 2015, 82, 95-103.	2.1	7
28	Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin. Microbiology (United Kingdom), 2014, 160, 1357-1368.	1.8	6
29	Proteomic Analyses Reveal that Sky1 Modulates Apoptosis and Mitophagy in Saccharomyces cerevisiae Cells Exposed to Cisplatin. International Journal of Molecular Sciences, 2014, 15, 12573-12590.	4.1	3
30	Cloning, expression, purification and characterization of an oligomeric His-tagged thermophilic esterase from Thermus thermophilus HB27. Process Biochemistry, 2014, 49, 927-935.	3.7	17
31	New Extremophilic Lipases and Esterases from Metagenomics. Current Protein and Peptide Science, 2014, 15, 445-455.	1.4	144
32	Hot Spring Metagenomics. Life, 2013, 3, 308-320.	2.4	69
33	The yeast hypoxic responses, resources for new biotechnological opportunities. Biotechnology Letters, 2012, 34, 2161-2173.	2.2	15
34	Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. Journal of Structural Biology, 2012, 177, 392-401.	2.8	88
35	SKY1 and IXR1 interactions, their effects on cisplatin and spermine resistance in Saccharomyces cerevisiae. Canadian Journal of Microbiology, 2012, 58, 184-188.	1.7	5
36	<i>Kluyveromyces lactis</i> : A Suitable Yeast Model to Study Cellular Defense Mechanisms against Hypoxia-Induced Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-14.	4.0	15

#	Article	IF	CITATIONS
37	lxr1p and the control of the Saccharomyces cerevisiae hypoxic response. Applied Microbiology and Biotechnology, 2012, 94, 173-184.	3.6	22
38	Production and characterization of two N-terminal truncated esterases from Thermus thermophilus HB27 in a mesophilic yeast: Effect of N-terminus in thermal activity and stability. Protein Expression and Purification, 2011, 78, 120-130.	1.3	17
39	Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Applied Microbiology and Biotechnology, 2011, 89, 375-385.	3.6	34
40	Two Proteins with Different Functions Are Derived from the <i>KlHEM13</i> Gene. Eukaryotic Cell, 2011, 10, 1331-1339.	3.4	1
41	Regulatory factors controlling transcription of <i>Saccharomyces cerevisiae IXR1</i> by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating <i>ROX1</i> and <i>IXR1</i> cross-regulation. Biochemical Journal, 2010, 425, 235-243.	3.7	20
42	Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microbial Cell Factories, 2010, 9, 4.	4.0	40
43	Heterologous expression of an esterase from Thermus thermophilus HB27 in Saccharomyces cerevisiae. Journal of Biotechnology, 2010, 145, 226-232.	3.8	25
44	Crystallization and preliminary X-ray crystallographic analysis of β-galactosidase from <i>Kluyveromyces lactis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 297-300.	0.7	9
45	A functional analysis of <i>Kluyveromyces lactis</i> glutathione reductase. Yeast, 2010, 27, 431-441.	1.7	6
46	lxr1p regulates oxygen-dependent HEM13 transcription. FEMS Yeast Research, 2010, 10, 309-321.	2.3	13
47	Proteomic Analysis of the Oxidative Stress Response inKluyveromyces lactisand Effect of Glutathione Reductase Depletion. Journal of Proteome Research, 2010, 9, 2358-2376.	3.7	12
48	Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microbial Cell Factories, 2009, 8, 46.	4.0	75
49	The role of glutathione reductase in the interplay between oxidative stress response and turnover of cytosolic NADPH in Kluyveromyces lactis. FEMS Yeast Research, 2008, 8, 597-606.	2.3	18
50	Kluyveromyces lactis β-galactosidase crystallization using full-factorial experimental design. Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53, 178-182.	1.8	8
51	Functional characterization of KlHAP1: A model to foresee different mechanisms of transcriptional regulation by Hap1p in yeasts. Gene, 2007, 405, 96-107.	2.2	18
52	Heterologous Aspergillus niger β-galactosidase secretion by Saccharomyces cerevisiae. Journal of Biotechnology, 2007, 131, S199-S200.	3.8	0
53	Functional motifs outside the kinase domain of yeast Srb10p. Their role in transcriptional regulation and protein-interactions with Tup1p and Srb11p. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1227-1235.	2.3	7
54	A functional analysis of <i>KlSRB10</i> : implications in <i>Kluyveromyces lactis</i> transcriptional regulation. Yeast, 2007, 24, 1061-1073.	1.7	2

#	Article	IF	CITATIONS
55	An approach to the hypoxic and oxidative stress responses inKluyveromyces lactisby analysis of mRNA levels. FEMS Yeast Research, 2007, 7, 702-714.	2.3	17
56	Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger beta-galactosidase. Microbial Cell Factories, 2006, 5, 41.	4.0	33
57	Characterization of the second external alternative dehydrogenase from mitochondria of the respiratory yeast Kluyveromyces lactis. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1476-1484.	1.0	24
58	A transcriptome analysis of Kluyveromyces lactis growing in cheese whey. International Dairy Journal, 2006, 16, 207-214.	3.0	11
59	Reoxidation of cytosolic NADPH inKluyveromyces lactis. FEMS Yeast Research, 2006, 6, 371-380.	2.3	43
60	Functional characterization of KIHEM13, a hypoxic gene of Kluyveromyces lactis. Canadian Journal of Microbiology, 2005, 51, 431-431.	1.7	1
61	Functional characterization of KlHEM13, a hypoxic gene of Kluyveromyces lactis. Canadian Journal of Microbiology, 2005, 51, 241-249.	1.7	11
62	The nuclear genes encoding the internal (KINDI1) and external (KINDE1) alternative NAD(P)H:ubiquinone oxidoreductases of mitochondria from Kluyveromyces lactis. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1707, 199-210.	1.0	31
63	Isolation and characterization of two nuclear genes encoding glutathione and thioredoxin reductases from the yeast Kluyveromyces lactis. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1678, 170-175.	2.4	14
64	Cloning Genes From a Library Using a Clustering Strategy and PCR. Molecular Biotechnology, 2004, 26, 35-38.	2.4	8
65	Functional characterisation and transcriptional regulation of the KlHEM12 gene from Kluyveromyces lactis. Current Genetics, 2004, 46, 147-57.	1.7	6
66	Isolation and transcriptional regulation of theKluyveromyces lactisFBA1(fructose-1,6-bisphosphate) Tj ETQq0 0 C) rgBT /Ove	erlgck 10 Tf 5
67	Genome-wide analysis of Kluyveromyces lactis in wild-type and rag2 mutant strains. Genome, 2004, 47, 970-978.	2.0	21
68	Engineered autolytic yeast strains secreting Kluyveromyces lactis β-galactosidase for production of heterologous proteins in lactose media. Journal of Biotechnology, 2004, 109, 131-137.	3.8	27
69	In vitro effects of mangiferin on superoxide concentrations and expression of the inducible nitric oxide synthase, tumour necrosis factor-î± and transforming growth factor-β genes. Biochemical Pharmacology, 2003, 65, 1361-1371.	4.4	140
70	Genome-Wide Analysis of the Yeast Transcriptome Upon Heat and Cold Shock. Comparative and Functional Genomics, 2003, 4, 366-375.	2.0	18
71	Mouse antibody response to a microsporidian parasite following inoculation with a gene coding for parasite ribosomal RNA. Vaccine, 2002, 20, 2648-2655.	3.8	2
72	Metabolic engineering for direct lactose utilization by Saccharomyces cerevisiae. Biotechnology Letters, 2002, 24, 1391-1396.	2.2	10

#	Article	IF	CITATIONS
73	Lactose bioconversion by calcium-alginate immobilization of Kluyveromyces lactis cells. Enzyme and Microbial Technology, 2001, 29, 506-512.	3.2	51
74	Title is missing!. Biotechnology Letters, 2001, 23, 33-40.	2.2	13
75	New secretory strategies for Kluyveromyces lactis β-galactosidase. Protein Engineering, Design and Selection, 2001, 14, 379-386.	2.1	39
76	RFLP analysis of PCR-amplified small subunit ribosomal DNA of three fish microsporidian species. Parasitology, 2000, 120, 113-119.	1.5	15
77	Respirofermentative metabolism in Kluyveromyces lactis:. Enzyme and Microbial Technology, 2000, 26, 699-705.	3.2	81
78	DNA probes for detection of the fish microsporidians Microgemma caulleryi and Tetramicra brevifilum. Parasitology, 1999, 119, 267-272.	1.5	8
79	Title is missing!. Biotechnology Letters, 1998, 12, 253-256.	0.5	40
80	Dealing with different methods for Kluyveromyces lactis β-galactosidase purification. Biological Procedures Online, 1998, 1, 48-58.	2.9	19
81	The Kluyveromyces lactis gene KlCSK-3 combines functions which in Saccharomyces cerevisiae are performed by MCK1 and MSD1. Current Genetics, 1998, 33, 262-267.	1.7	2
82	Effects of chitinolytic and proteolytic enzymes on in vitro phagocytosis of microsporidians by spleen macrophages of turbot, Scophthalmus maximus L Veterinary Immunology and Immunopathology, 1997, 59, 171-180.	1.2	9
83	Heterologous Kluyveromyces lactis β-galactosidase production and release by Saccharomyces cerevisiae osmotic-remedial thermosensitive autolytic mutants. Biochimica Et Biophysica Acta - General Subjects, 1997, 1335, 235-241.	2.4	27
84	Enzyme encapsulation on chitosan microbeads. Process Biochemistry, 1997, 32, 211-216.	3.7	69
85	Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose byKluyveromyces lactis rag2mutants. FEBS Letters, 1996, 387, 7-10.	2.8	41
86	PICDI, a simple program for codon bias calculation. Molecular Biotechnology, 1996, 5, 191-195.	2.4	7
87	Sequence analysis of a 10 kb DNA fragment from yeast chromosome VII reveals a novel member of the dnaJ family. , 1996, 12, 145-148.		4
88	Respirofermentative metabolism in Kluyveromyces lactis: Ethanol production and the Crabtree effect. Enzyme and Microbial Technology, 1996, 18, 585-591.	3.2	59
89	Yeast β-galactosidase in solid-state fermentations. Enzyme and Microbial Technology, 1996, 19, 39-44.	3.2	32
90	The biotechnological utilization of cheese whey: A review. Bioresource Technology, 1996, 57, 1-11.	9.6	587

#	Article	IF	CITATIONS
91	A factorial experimental design for investigation of the effects of temperature, incubation time, and pathogen-to-phagocyte ratio on in vitro phagocytosis by turbot adherent cells. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1995, 112, 215-220.	0.5	6
92	Chromosomal mapping of the KlCYC1 gene from Kluyveromyces lactis. Genome, 1994, 37, 515-517.	2.0	4
93	A simple form of immobilisation and its effects on morphologic trends and metabolic activity of pellet-forming microfungi. Bioresource Technology, 1994, 48, 237-243.	9.6	4
94	Kluyveromyces lactis immobilization on corn grits for milk whey lactose hydrolysis. Enzyme and Microbial Technology, 1994, 16, 303-310.	3.2	35
95	β-Galactosidase production by Kluyveromyces lactis on milk whey: batch versus fed-batch cultures. Process Biochemistry, 1994, 29, 565-568.	3.7	22
96	Covalent immobilization of β-galactosidase on corn grits. A system for lactose hydrolysis without diffusional resistance. Process Biochemistry, 1994, 29, 7-12.	3.7	27
97	Codon usage in Kluyveromyces lactis and in yeast cytochrome c-encoding genes. Gene, 1994, 139, 43-49.	2.2	71
98	Characterization of microbial biomasses and amylolytic preparations obtained from mussel processing waste treatment. Bioresource Technology, 1993, 43, 117-125.	9.6	45
99	Enhancement of the bioproduction potential of an amylaceous effluent. Bioresource Technology, 1993, 44, 155-163.	9.6	21
100	Permeabilization ofKluyveromyces lactis cells for milk whey saccharification: A comparison of different treatments. Biotechnology Letters, 1992, 6, 289-292.	0.5	29
101	Depuration and valuation of mussel-processing wastes. Characterization of amylolytic postincubates from different species grown on an effluent. Bioresource Technology, 1992, 42, 133-140.	9.6	35
102	A HPLC method for specific determination ofα-amylase and glucoamylase in complex enzymatic preparations. Chromatographia, 1989, 27, 328-332.	1.3	10
103	Microfungus-yeast mixed cultures in the degradation of amylaceous wastes. II: An experimental design for optimization of yeast production. Biotechnology Letters, 1988, 2, 171-176.	0.5	4
104	Microfungus-yeast mixed cultures in the degradation of amylaceous wastes. I: Interactions affecting amylolytic activity. Biotechnology Letters, 1988, 10, 431-436.	2.2	8
105	Amylolysis in systems with ?-amylase and glucoamylase. A comparative study of six procedures of evaluation. Biotechnology Letters, 1987, 1, 195.	0.5	10