
James L Jameson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2173548/publications.pdf Version: 2024-02-01

LAMES L LAMESON

#	Article	IF	CITATIONS
1	Introducing Expert Endocrine Consult. Journal of the Endocrine Society, 2020, 4, bvaa070.	0.2	Ο
2	What a medical school chair wants from the dean. Journal of Healthcare Leadership, 2018, Volume 10, 33-44.	3.9	4
3	Leadership Development in Medicine. New England Journal of Medicine, 2018, 378, 1862-1863.	27.0	46
4	Endocrinology of Sexual Maturation and Puberty. , 2016, , 2119-2129.e2.		3
5	Applications of Genetics in Endocrinology. , 2016, , 41-68.e8.		1
6	Research in academic medical centers: Two threats to sustainable support. Science Translational Medicine, 2015, 7, 289fs22.	12.4	12
7	Precision Medicine — Personalized, Problematic, and Promising. New England Journal of Medicine, 2015, 372, 2229-2234.	27.0	816
8	Endocrine Society 2014 Laureate Awards. Hormones and Cancer, 2014, 5, 339-355.	4.9	1
9	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism*. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 768-770.	3.6	62
10	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism. Thyroid, 2014, 24, 407-409.	4.5	46
11	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism. European Thyroid Journal, 2014, 3, 7-9.	2.4	35
12	Disruptive innovation as a driver of science and medicine. Journal of Clinical Investigation, 2014, 124, 2822-2826.	8.2	8
13	The imperative to invest in science has never been greater. Journal of Clinical Investigation, 2014, 124, 3680-3681.	8.2	3
14	The imperative to invest in science has never been greater. Journal of Clinical Investigation, 2014, 124, 5085-5085.	8.2	0
15	Introduction of John T. Potts Jr Journal of Clinical Investigation, 2013, 123, 4971-4977.	8.2	0
16	Serum from Methimazole-Treated Patients Induces Activation of Aryl Hydrocarbon Receptor, a Transcription Factor That Binds to Dioxin-Response Elements. Thyroid, 2012, 22, 769-777.	4.5	5
17	Minimizing Unnecessary Surgery for Thyroid Nodules. New England Journal of Medicine, 2012, 367, 765-767.	27.0	36
18	ENU mutagenesis in mice identifies candidate genes for hypogonadism. Mammalian Genome, 2012, 23, 346-355.	2.2	16

#	Article	IF	CITATIONS
19	Hypogonadotropic hypogonadism in subjects with DAX1 mutations. Molecular and Cellular Endocrinology, 2011, 346, 65-73.	3.2	82
20	Male Hypogonadism and Germ Cell Loss Caused by a Mutation in Polo-Like Kinase 4. Endocrinology, 2011, 152, 3975-3985.	2.8	23
21	Sox3 Functions in a Cell-Autonomous Manner to Regulate Spermatogonial Differentiation in Mice. Endocrinology, 2011, 152, 1606-1615.	2.8	39
22	Steroidogenic Factor-1 (SF-1)-Driven Differentiation of Murine Embryonic Stem (ES) Cells into a Gonadal Lineage. Endocrinology, 2011, 152, 2870-2882.	2.8	35
23	Genetic rescue of nonclassical ERα signaling normalizes energy balance in obese Erα-null mutant mice. Journal of Clinical Investigation, 2011, 121, 604-612.	8.2	143
24	A missense mutation in LRR8 of RXFP2 is associated with cryptorchidism. Mammalian Genome, 2010, 21, 442-449.	2.2	8
25	Absence of activating mutations of <i>CXCR4</i> in pituitary tumours. Clinical Endocrinology, 2010, 72, 209-213.	2.4	10
26	The Effect of Relaxin on Cell Proliferation in Mouse Cervix Requires Estrogen Receptor α Binding to Estrogen Response Elements in Stromal Cells. Endocrinology, 2010, 151, 2811-2818.	2.8	12
27	Endocrinology of Sexual Maturation and Puberty. , 2010, , 2229-2238.		1
28	Applications of Genetics in Endocrinology. , 2010, , 118-143.		0
29	Sox3 Affects Kit Expression in a Differentiated Germ Cell Line Biology of Reproduction, 2010, 83, 68-68.	2.7	0
30	Regulation of <i>Kiss1</i> and <i>Dynorphin</i> Gene Expression in the Murine Brain by Classical and Nonclassical Estrogen Receptor Pathways. Journal of Neuroscience, 2009, 29, 9390-9395.	3.6	169
31	Aromatase Promoter I.f is Regulated by Estrogen Receptor Alpha (ESR1) in Mouse Hypothalamic Neuronal Cell Lines1. Biology of Reproduction, 2009, 81, 956-965.	2.7	40
32	Foxl2, a Forkhead Transcription Factor, Modulates Nonclassical Activity of the Estrogen Receptor-α. Endocrinology, 2009, 150, 5085-5093.	2.8	31
33	p21-Activated kinase mediates rapid estradiol-negative feedback actions in the reproductive axis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7221-7226.	7.1	42
34	Selective Disruption of ERα DNA-Binding Activity Alters Uterine Responsiveness to Estradiol. Molecular Endocrinology, 2009, 23, 2111-2116.	3.7	39
35	New insights into the classical and non-classical actions of estrogen: Evidence from estrogen receptor knock-out and knock-in mice. Molecular and Cellular Endocrinology, 2008, 290, 24-30.	3.2	123
36	HoxD10 gene delivery using adenovirus/adeno-associate hybrid virus inhibits the proliferation and tumorigenicity of GH4 pituitary lactotrope tumor cells. Biochemical and Biophysical Research Communications, 2008, 371, 371-374.	2.1	5

#	Article	IF	CITATIONS
37	Classical Estrogen Receptor α Signaling Mediates Negative and Positive Feedback on Gonadotropin-Releasing Hormone Neuron Firing. Endocrinology, 2008, 149, 5328-5334.	2.8	72
38	A Phenotypic Spectrum of Sexual Development in Dax1 (Nr0b1)-Deficient Mice: Consequence of the C57BL/6J Strain on Sex Determination1. Biology of Reproduction, 2008, 79, 1038-1045.	2.7	22
39	Estrogen Actions in the Male Reproductive System Involve Estrogen Response Element-Independent Pathways. Endocrinology, 2008, 149, 6198-6206.	2.8	33
40	Splice Variants of the Forkhead Box Protein AFX Exhibit Dominant Negative Activity and Inhibit AFXα-Mediated Tumor Cell Apoptosis. PLoS ONE, 2008, 3, e2743.	2.5	12
41	Estrogen Response Element-Independent Estrogen Receptor (ER)-α Signaling Does Not Rescue Sexual Behavior but Restores Normal Testosterone Secretion in Male ERα Knockout Mice. Endocrinology, 2007, 148, 5288-5294.	2.8	45
42	Effects of Loss of Classical Estrogen Response Element Signaling on Bone in Male Mice. Endocrinology, 2007, 148, 1902-1910.	2.8	29
43	Distinct Roles for Steroidogenic factor 1 and Desert hedgehog Pathways in Fetal and Adult Leydig Cell Development. Endocrinology, 2007, 148, 3704-3710.	2.8	77
44	Heterozygous Missense Mutations in Steroidogenic Factor 1 (SF1/Ad4BP, NR5A1) Are Associated with 46,XY Disorders of Sex Development with Normal Adrenal Function. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 991-999.	3.6	189
45	Rites of passage through puberty: A complex genetic ensemble. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17247-17248.	7.1	7
46	Islet cell differentiation in liver by combinatorial expression of transcription factors Neurogenin-3, BETA2, and RIPE3b1. Biochemical and Biophysical Research Communications, 2007, 354, 334-339.	2.1	40
47	TRANSCRIPTIONAL REGULATION OF CYP26B1 IN A MOUSE SERTOLI CELL LINE. Biology of Reproduction, 2007, 77, 133-133.	2.7	Ο
48	Analysis of DAX1 (NROB1) and Steroidogenic Factor-1 (NR5A1) in Children and Adults with Primary Adrenal Failure: Ten Years' Experience. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3048-3054.	3.6	183
49	Aromatase-independent testosterone conversion into estrogenic steroids is inhibited by a 5α-reductase inhibitor. Journal of Steroid Biochemistry and Molecular Biology, 2006, 98, 133-138.	2.5	33
50	Two sisters with IMAGe syndrome: Cytomegalic adrenal histopathology, support for autosomal recessive inheritance and literature review. American Journal of Medical Genetics, Part A, 2006, 140A, 1778-1784.	1.2	18
51	Gene Transfer of Pigment Epithelium-Derived Factor Suppresses Tumor Growth and Angiogenesis in a Hepatoblastoma Xenograft Model. Pediatric Research, 2006, 60, 282-287.	2.3	24
52	Estrogen-induced Proliferation of Uterine Epithelial Cells Is Independent of Estrogen Receptor α Binding to Classical Estrogen Response Elements. Journal of Biological Chemistry, 2006, 281, 26683-26692.	3.4	109
53	OSTEOPOROSIS: Vitamin D inadequacy in women treated for osteoporosis. Postgraduate Medicine, 2005, 118, 17-17.	2.0	Ο
54	WOMEN'S HEALTH: Management of menopause-related symptoms. Postgraduate Medicine, 2005, 118, 11-11.	2.0	0

#	Article	IF	CITATIONS
55	Skeletal Effects of Estrogen Are Mediated by Opposing Actions of Classical and Nonclassical Estrogen Receptor Pathways. Journal of Bone and Mineral Research, 2005, 20, 1992-2001.	2.8	66
56	Effect of intensive lifestyle and metformin therapy on cardiovascular risk factors in patients with impaired glucose tolerance. Postgraduate Medicine, 2005, 117, 7-7.	2.0	13
57	Male hormonal contraceptives on the horizon. Postgraduate Medicine, 2005, 117, 6-6.	2.0	Ο
58	OSTEOPOROSIS: Weight loss increases bone loss in older men. Postgraduate Medicine, 2005, 118, 8-8.	2.0	0
59	A Dominant Negative Peroxisome Proliferator-activated Receptor-Î ³ Knock-in Mouse Exhibits Features of the Metabolic Syndrome. Journal of Biological Chemistry, 2005, 280, 17118-17125.	3.4	64
60	Phenotypic Features Associated with Mutations in Steroidogenic Acute Regulatory Protein. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6303-6309.	3.6	42
61	Quantitative Trait Loci Associated with Elevated Thyroid-Stimulating Hormone in the Wistar-Kyoto Rat. Endocrinology, 2005, 146, 870-878.	2.8	15
62	Pituitary Transcription Factor-1 Induces Transient Differentiation of Adult Hepatic Stem Cells into Prolactin-Producing Cells in Vivo. Molecular Endocrinology, 2005, 19, 964-971.	3.7	25
63	Peroxisome Proliferator-activated Receptor Î ³ Agonists Promote TRAIL-induced Apoptosis by Reducing Survivin Levels via Cyclin D3 Repression and Cell Cycle Arrest. Journal of Biological Chemistry, 2005, 280, 6742-6751.	3.4	98
64	Induction of Cyclin D2 in Rat Granulosa Cells Requires FSH-dependent Relief from FOXO1 Repression Coupled with Positive Signals from Smad. Journal of Biological Chemistry, 2005, 280, 9135-9148.	3.4	147
65	Gene therapy of pituitary diseases. Journal of Endocrinology, 2005, 185, 353-362.	2.6	21
66	ERE-independent ERα target genes differentially expressed in human breast tumors. Molecular and Cellular Endocrinology, 2005, 245, 53-59.	3.2	27
67	Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Developmental Biology, 2005, 283, 215-225.	2.0	142
68	Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation during testis development. Development (Cambridge), 2005, 132, 2415-2423.	2.5	81
69	Minireview: Transcriptional Regulation of Gonadal Development and Differentiation. Endocrinology, 2005, 146, 1035-1042.	2.8	97
70	Of Mice and Men: The Tale of Steroidogenic Factor-1. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5927-5929.	3.6	46
71	X-Linked Sex-Determining Region Y Box 3 (SOX3) Gene Mutations Are Uncommon in Men with Idiopathic Oligoazoospermic Infertility. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4146-4148.	3.6	19
72	Nonhomologous End-Joining Ligation Transfers DNA Regulatory Elements between Cointroduced Plasmids. Molecular and Cellular Biology, 2004, 24, 8323-8331.	2.3	15

James L Jameson

#	Article	IF	CITATIONS
73	Molecular mechanisms of end-organ resistance. Growth Hormone and IGF Research, 2004, 14, 45-50.	1.1	18
74	Dominant negative insulin-like growth factor-1 receptor inhibits neointimal formation through suppression of vascular smooth muscle cell migration and proliferation, and induction of apoptosis. Biochemical and Biophysical Research Communications, 2004, 325, 1106-1114.	2.1	27
75	Estrogenic effects of resveratrol in breast cancer cells expressing mutant and wild-type estrogen receptors: role of AF-1 and AF-2. Journal of Steroid Biochemistry and Molecular Biology, 2004, 88, 223-234.	2.5	55
76	Resveratrol acts as an estrogen receptor (ER) agonist in breast cancer cells stably transfected with ER α. International Journal of Cancer, 2003, 104, 587-596.	5.1	103
77	Dax1 is required for testis determination. Nature Genetics, 2003, 34, 32-33.	21.4	168
78	A novel single base deletion at codon 434 (1301delT) of the DAX1 gene associated with prepubertal testis enlargement. Molecular Genetics and Metabolism, 2003, 78, 79-81.	1.1	15
79	SF1 in the Development of the Adrenal Gland and Gonads. Hormone Research in Paediatrics, 2003, 59, 94-98.	1.8	55
80	Dax1 regulates testis cord organization during gonadal differentiation. Development (Cambridge), 2003, 130, 1029-1036.	2.5	116
81	Leydig Cell-Specific Expression of DAX1 Improves Fertility of the Dax1-Deficient Mouse1. Biology of Reproduction, 2003, 69, 154-160.	2.7	35
82	<i>Sox3</i> Is Required for Gonadal Function, but Not Sex Determination, in Males and Females. Molecular and Cellular Biology, 2003, 23, 8084-8091.	2.3	168
83	A novel loss of function mutation in exon 10 of the FSH receptor gene causing hypergonadotrophic hypogonadism: clinical and molecular characteristics. Human Reproduction, 2003, 18, 251-256.	0.9	100
84	An Alternate Translation Initiation Site Circumvents an Amino-Terminal DAX1 Nonsense Mutation Leading to a Mild Form of X-Linked Adrenal Hypoplasia Congenita. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 417-423.	3.6	103
85	A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. Journal of Clinical Investigation, 2003, 112, 1697-1706.	8.2	37
86	A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. Journal of Clinical Investigation, 2003, 112, 1697-1706.	8.2	75
87	Battle of the sexes: new insights into genetic pathways of gonadal development. Transactions of the American Clinical and Climatological Association, 2003, 114, 51-63; discussion 64-5.	0.5	17
88	Progressive Onset of Adrenal Insufficiency and Hypogonadism of Pituitary Origin Caused by a Complex Genetic Rearrangement within DAX-1. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 4094-4100.	3.6	29
89	Hypogonadotropic Hypogonadism as a Presenting Feature of Late-Onset X-Linked Adrenal Hypoplasia Congenita. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 44-48.	3.6	94
90	Interaction Between Dax-1 and Steroidogenic Factor-1 in Vivo: Increased Adrenal Responsiveness to ACTH in the Absence of Dax-1. Endocrinology, 2002, 143, 665-673.	2.8	76

#	Article	lF	CITATIONS
91	Gonadal Determination and Adrenal Development Are Regulated by the Orphan Nuclear Receptor Steroidogenic Factor-1, in a Dose-Dependent Manner. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1829-1833.	3.6	251
92	Genetic Causes of Human Reproductive Disease. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2447-2454.	3.6	70
93	Cloning of the Cat TSH Receptor and Evidence Against an Autoimmune Etiology of Feline Hyperthyroidism. Endocrinology, 2002, 143, 395-402.	2.8	21
94	An Estrogen Receptor (ER)α Deoxyribonucleic Acid-Binding Domain Knock-In Mutation Provides Evidence for Nonclassical ER Pathway Signaling in Vivo. Molecular Endocrinology, 2002, 16, 2188-2201.	3.7	170
95	Cell-Specific Cre-Mediated Activation of the Diphtheria Toxin Gene in Pituitary Tumor Cells: Potential for Cytotoxic Gene Therapy. Human Gene Therapy, 2002, 13, 533-542.	2.7	44
96	Estrogen regulates a tissue-specific calpain in the anterior pituitary. Biochemical and Biophysical Research Communications, 2002, 295, 261-266.	2.1	9
97	The role of SF1 in adrenal and reproductive function: insight from naturally occurring mutations in humans. Molecular Genetics and Metabolism, 2002, 76, 85-91.	1.1	73
98	Cloning of the Cat TSH Receptor and Evidence Against an Autoimmune Etiology of Feline Hyperthyroidism. Endocrinology, 2002, 143, 395-402.	2.8	11
99	Interaction Between Dax-1 and Steroidogenic Factor-1 in Vivo: Increased Adrenal Responsiveness to ACTH in the Absence of Dax-1. Endocrinology, 2002, 143, 665-673.	2.8	24
100	Hypogonadotropic Hypogonadism as a Presenting Feature of Late-Onset X-Linked Adrenal Hypoplasia Congenita. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 44-48.	3.6	29
101	Gonadal Determination and Adrenal Development Are Regulated by the Orphan Nuclear Receptor Steroidogenic Factor-1, in a Dose-Dependent Manner. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1829-1833.	3.6	61
102	Phenotypic spectrum of mutations in DAX-1 and SF-1. Molecular and Cellular Endocrinology, 2001, 185, 17-25.	3.2	146
103	Adenovirus-directed Expression of Dominant Negative Estrogen Receptor Induces Apoptosis in Breast Cancer Cells and Regression of Tumors in Nude Mice. Molecular Medicine, 2001, 7, 773-782.	4.4	26
104	Variable Presentation of X-linked Adrenal Hypoplasia Congenita. Journal of Pediatric Endocrinology and Metabolism, 2001, 14, 1093-6.	0.9	40
105	Absence of Constitutively Activating Mutations in the GHRH Receptor in GH-Producing Pituitary Tumors. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3989-3995.	3.6	37
106	Estrogen Receptor Binding to DNA Is Not Required for Its Activity through the Nonclassical AP1 Pathway. Journal of Biological Chemistry, 2001, 276, 13615-13621.	3.4	248
107	Follicle-stimulating Hormone Stimulates Protein Kinase A-mediated Histone H3 Phosphorylation and Acetylation Leading to Select Gene Activation in Ovarian Granulosa Cells. Journal of Biological Chemistry, 2001, 276, 40146-40155.	3.4	144
108	Restoration of Growth Hormone-Releasing Hormone (GHRH) Responsiveness in Pituitary GH3 Cells by Adenovirus-Directed Expression of the Human GHRH Receptor**This work was supported by a Center of Excellence grant from Knoll Pharmaceutical Co Endocrinology, 2001, 142, 414-420.	2.8	36

#	Article	IF	CITATIONS
109	Dominant Negative ER Induces Apoptosis in GH4 Pituitary Lactotrope Cells and Inhibits Tumor Growth in Nude Mice. Endocrinology, 2001, 142, 3756-3763.	2.8	52
110	Adenovirus-Mediated Targeted Expression of Toxic Genes to Adrenocorticotropin-Producing Pituitary Tumors Using the Proopiomelanocortin Promoter1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3400-3409.	3.6	20
111	Missense Mutations Cluster within the Carboxyl-Terminal Region of DAX-1 and Impair Transcriptional Repression1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3171-3175.	3.6	69
112	Blockage of the Rete Testis and Efferent Ductules by Ectopic Sertoli and Leydig Cells Causes Infertility in <i>Dax1<i>-</i> (i> c/i) Deficient Male Mice. Endocrinology, 2001, 142, 4486-4495.</i>	2.8	69
113	Sertoli Cell-Specific Rescue of Fertility, But Not Testicular Pathology, in Dax1 (Ahch)-Deficient Male Mice*. Endocrinology, 2001, 142, 2481-2488.	2.8	45
114	Restoration of Growth Hormone-Releasing Hormone (GHRH) Responsiveness in Pituitary GH3 Cells by Adenovirus-Directed Expression of the Human GHRH Receptor. Endocrinology, 2001, 142, 414-420.	2.8	8
115	Blockage of the Rete Testis and Efferent Ductules by Ectopic Sertoli and Leydig Cells Causes Infertility in Dax1-Deficient Male Mice. Endocrinology, 2001, 142, 4486-4495.	2.8	19
116	Sertoli Cell-Specific Rescue of Fertility, But Not Testicular Pathology, in Dax1 (Ahch)-Deficient Male Mice. Endocrinology, 2001, 142, 2481-2488.	2.8	18
117	Dominant Negative ER Induces Apoptosis in GH4 Pituitary Lactotrope Cells and Inhibits Tumor Growth in Nude Mice. Endocrinology, 2001, 142, 3756-3763.	2.8	14
118	Absence of Constitutively Activating Mutations in the GHRH Receptor in GH-Producing Pituitary Tumors. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3989-3995.	3.6	8
119	Stereotactic Injection of Adenoviral Vectors that Target Gene Expression to Specific Pituitary Cell Types: Implications for Gene Therapy. Neurosurgery, 2000, 46, 1461-1469.	1.1	46
120	A Naturally Occurring Steroidogenic Factor-1 Mutation Exhibits Differential Binding and Activation of Target Genes. Journal of Biological Chemistry, 2000, 275, 31708-31714.	3.4	75
121	Substitutions of Tyrosine 601 in the Human Thyrotropin Receptor Result in Increase or Loss of Basal Activation of the Cyclic Adenosine Monophosphate Pathway and Disrupt Coupling to G _q /11. Thyroid, 2000, 10, 3-10.	4.5	30
122	Synergistic Activation of the Inhibin α-Promoter by Steroidogenic Factor-1 and Cyclic Adenosine 3′,5′-Monophosphate. Molecular Endocrinology, 2000, 14, 66-81.	3.7	110
123	A novel mutation in DAX1 causes delayed-onset adrenal insufficiency and incomplete hypogonadotropic hypogonadism. Journal of Clinical Investigation, 2000, 105, 321-328.	8.2	171
124	Clinical and Functional Effects of Mutations in the <i>DAX-1</i> Gene in Patients with Adrenal Hypoplasia Congenita ¹ . Journal of Clinical Endocrinology and Metabolism, 1999, 84, 504-511.	3.6	143
125	X-Linked Adrenal Hypoplasia Congenita: A Mutation inDAX1Expands the Phenotypic Spectrum in Males and Females1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4501-4509.	3.6	157
126	Estradiol Suppresses Phosphorylation of Cyclic Adenosine 3′,5′-Monophosphate Response Element Binding Protein (CREB) in the Pituitary: Evidence for Indirect Action via Gonadotropin-Releasing Hormone. Molecular Endocrinology, 1999, 13, 1338-1352.	3.7	31

#	Article	IF	CITATIONS
127	A Fusion Protein of the Estrogen Receptor (ER) and Nuclear Receptor Corepressor (NCoR) Strongly Inhibits Estrogen-Dependent Responses in Breast Cancer Cells. Molecular Endocrinology, 1999, 13, 2122-2136.	3.7	27
128	Fertility and Infertility: Genetic Contributions from the Hypothalamic-Pituitary- Gonadal Axis. Molecular Endocrinology, 1999, 13, 812-818.	3.7	51
129	Mutational Analysis of DAX1 in Patients with Hypogonadotropic Hypogonadism or Pubertal Delay1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4497-4500.	3.6	77
130	Targeted Expression of Toxic Genes Directed by Pituitary Hormone Promoters: A Potential Strategy for Adenovirus-Mediated Gene Therapy of Pituitary Tumors1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 786-794.	3.6	69
131	Estradiol Increases Proliferation and Down-Regulates the Sodium/Iodide Symporter Gene in FRTL-5 Cells1. Endocrinology, 1999, 140, 5705-5711.	2.8	142
132	Thyrotropin Receptor Mutations in Hyperfunctioning Thyroid Adenomas from Brazil. Thyroid, 1999, 9, 1063-1068.	4.5	56
133	Mechanisms That Mediate Negative Regulation of the Thyroid-stimulating Hormone α Gene by the Thyroid Hormone Receptor. Journal of Biological Chemistry, 1999, 274, 22345-22353.	3.4	110
134	Mutant Vasopressin Precursors That Cause Autosomal Dominant Neurohypophyseal Diabetes Insipidus Retain Dimerization and Impair the Secretion of Wild-type Proteins. Journal of Biological Chemistry, 1999, 274, 9029-9037.	3.4	84
135	A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nature Genetics, 1999, 22, 125-126.	21.4	642
136	X-linked Kallmann syndrome and renal agenesis occurring together and independently in a large Australian family. , 1999, 83, 23-27.		28
137	Estradiol Increases Proliferation and Down-Regulates the Sodium/Iodide Symporter Gene in FRTL-5 Cells. Endocrinology, 1999, 140, 5705-5711.	2.8	44
138	Role of Ahch in gonadal development and gametogenesis. Nature Genetics, 1998, 20, 353-357.	21.4	420
139	Steroidogenic Factor-1 Contains a Carboxy-Terminal Transcriptional Activation Domain That Interacts with Steroid Receptor Coactivator-1. Molecular Endocrinology, 1998, 12, 290-301.	3.7	126
140	Nuclear Corepressors Enhance the Dominant Negative Activity of Mutant Receptors That Cause Resistance to Thyroid Hormone*. Endocrinology, 1998, 139, 640-650.	2.8	57
141	The Murine <i>Dax-1</i> Promoter Is Stimulated by SF-1 (Steroidogenic Factor-1) and Inhibited by COUP-TF (Chicken Ovalbumin Upstream Promoter-Transcription Factor) via a Composite Nuclear Receptor-Regulatory Element. Molecular Endocrinology, 1998, 12, 1010-1022.	3.7	113
142	A Novel Natural Mutation in the Thyroid Hormone Receptor Defines a Dual Functional Domain That Exchanges Nuclear Receptor Corepressors and Coactivators. Molecular Endocrinology, 1998, 12, 1888-1902.	3.7	77
143	Steroidogenic Factor-1 and Early Growth Response Protein 1 Act through Two Composite DNA Binding Sites to Regulate Luteinizing Hormone Î ² -Subunit Gene Expression. Journal of Biological Chemistry, 1998, 273, 14712-14720.	3.4	122
144	Nuclear Corepressors Enhance the Dominant Negative Activity of Mutant Receptors That Cause Resistance to Thyroid Hormone. Endocrinology, 1998, 139, 640-650.	2.8	17

#	Article	IF	CITATIONS
145	A Novel Natural Mutation in the Thyroid Hormone Receptor Defines a Dual Functional Domain That Exchanges Nuclear Receptor Corepressors and Coactivators. Molecular Endocrinology, 1998, 12, 1888-1902.	3.7	22
146	The Murine Dax-1 Promoter Is Stimulated by SF-1 (Steroidogenic Factor-1) and Inhibited by COUP-TF (Chicken Ovalbumin Upstream Promoter-Transcription Factor) via a Composite Nuclear Receptor-Regulatory Element. Molecular Endocrinology, 1998, 12, 1010-1022.	3.7	32
147	Thyroid Disorders. , 1998, , 459-473.		0
148	Pituitary Follistatin Regulates Activin-Mediated Production of Follicle-Stimulating Hormone during the Rat Estrous Cycle*. Endocrinology, 1997, 138, 2841-2848.	2.8	71
149	Congenital Nonautoimmune Hyperthyroidism in a Nonidentical Twin Caused by a Sporadic Germline Mutation in the Thyrotropin Receptor Gene. Thyroid, 1997, 7, 765-770.	4.5	63
150	Regulation of the Human Chorionic Gonadotropin α- and β-Subunit Promoters by AP-2. Journal of Biological Chemistry, 1997, 272, 15405-15412.	3.4	76
151	G Protein and Thyrotropin Receptor Mutations in Thyroid Neoplasia*. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 493-496.	3.6	32
152	Delayed Puberty and Hypogonadism Caused by Mutations in the Follicle-Stimulating Hormone β-Subunit Gene. New England Journal of Medicine, 1997, 337, 607-611.	27.0	259
153	Expression of Ryanodine Receptors in the Pituitary Gland: Evidence for a Role in Gonadotropin-Releasing Hormone Signaling. Endocrinology, 1997, 138, 2056-2065.	2.8	5
154	Pituitary Follistatin Regulates Activin-Mediated Production of Follicle-Stimulating Hormone during the Rat Estrous Cycle. Endocrinology, 1997, 138, 2841-2848.	2.8	20
155	Inherited disorders of the gonadotropin hormones. Molecular and Cellular Endocrinology, 1996, 125, 143-149.	3.2	35
156	Epidermal Growth Factor and c-Jun Act via a Common DNA Regulatory Element to Stimulate Transcription of the Ovine P-450 Cholesterol Side Chain Cleavage (CYP11A1) Promoter. Journal of Biological Chemistry, 1995, 270, 18301-18308.	3.4	77
157	Congenital Hyperthyroidism Caused by a Mutation in the Thyrotropin-Receptor Gene. New England Journal of Medicine, 1995, 332, 150-154.	27.0	322
158	Regulation of Chorionic Gonadotropin Gene Expression*. Endocrine Reviews, 1993, 14, 203-221.	20.1	150
159	Hypogonadism Caused by a Single Amino Acid Substitution in the β Subunit of Luteinizing Hormone. New England Journal of Medicine, 1992, 326, 179-183.	27.0	378
160	Novel Cyclic Adenosine 3′,5′- Monophosphate Response Element in the Human Chorionic Gonadotropin β-Subunit Gene. Molecular Endocrinology, 1991, 5, 693-702.	3.7	56
161	Normal Sequence of the Gonadotropin-Releasing Hormone Gene in Patients with Idiopathic Hypogonadotropic Hypogonadism1. Biology of Reproduction, 1991, 45, 743-747.	2.7	50
162	Binding Specificity of Cyclic Adenosine 3′,5′-Monophosphate- Responsive Element (CRE)-Binding Proteins and Activating Transcription Factors to Naturally Occurring CRE Sequence Variants. Molecular Endocrinology, 1991, 5, 1541-1551.	3.7	42

#	Article	IF	CITATIONS
163	Normal Structure of the Gonadotropin-Releasing Hormone (GnRH) Gene in Patients with GnRH Deficiency and Idiopathic Hypogonadotropic Hypogonadism*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 299-303.	3.6	63
164	Gonadotropin and <i><i>α</i></i> Subunit Responses to Chronic Gonadotropin-Releasing Hormone Analog Administration in Patients With Glycoprotein Hormone- Secreting Pituitary Tumors*. Journal of Clinical Endocrinology and Metabolism, 1989, 68, 81-86.	3.6	53
165	Enhancer and Promoter Element Interactions Dictate Cyclic Adenosine Monophosphate Mediated and Cell-Specific Expression of the Glycoprotein Hormone α-Gene. Molecular Endocrinology, 1989, 3, 763-772.	3.7	84
166	Human Follicle-Stimulating Hormone β-Subunit Gene Encodes Multiple Messenger Ribonucleic Acids. Molecular Endocrinology, 1988, 2, 806-815.	3.7	112
167	Transcriptional Regulation of Chorionic Gonadotropin <i>α</i> - and <i>β</i> -Subunit Gene Expression by 8-Bromo-Adenosine 3′,5′-Monophosphate*. Endocrinology, 1986, 119, 2560-2567.	2.8	85