Bhalchandra Bhanage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2173512/publications.pdf

Version: 2024-02-01

419 papers

15,033 citations

18482 62 h-index 93 g-index

423 all docs 423 docs citations

times ranked

423

12994 citing authors

#	Article	IF	CITATIONS
1	Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chemical Engineering Research and Design, 2014, 92, 2557-2567.	5.6	484
2	Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Applied Catalysis A: General, 2001, 219, 259-266.	4.3	346
3	Trifluoromethylchlorosulfonylation of Alkenes: Evidence for an Innerâ€Sphere Mechanism by a Copper Phenanthroline Photoredox Catalyst. Angewandte Chemie - International Edition, 2015, 54, 6999-7002.	13.8	303
4	Heck Reactions of Iodobenzene and Methyl Acrylate with Conventional Supported Palladium Catalysts in the Presence of Organic and/or Inorganic Bases without Ligands. Chemistry - A European Journal, 2000, 6, 843-848.	3.3	292
5	Recent developments in palladium catalysed carbonylation reactions. RSC Advances, 2014, 4, 10367.	3.6	271
6	Recent advances in the transition metal catalyzed carbonylation of alkynes, arenes and aryl halides using CO surrogates. Catalysis Science and Technology, 2015, 5, 4663-4702.	4.1	229
7	Factors governing dissolution process of lignocellulosic biomass in ionic liquid: Current status, overview and challenges. Bioresource Technology, 2015, 178, 2-18.	9.6	212
8	Recent Advances in Transition Metalâ€Catalyzed Hydrogenation of Nitriles. Advanced Synthesis and Catalysis, 2015, 357, 883-900.	4.3	194
9	Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides and methanol using heterogeneous Mg containing smectite catalysts: effect of reaction variables on activity and selectivity performance. Green Chemistry, 2003, 5, 71-75.	9.0	165
10	CATALYST PRODUCT SEPARATION TECHNIQUES IN HECK REACTION. Catalysis Reviews - Science and Engineering, 2001, 43, 315-344.	12.9	162
11	Enhancement of interfacial catalysis in a biphasic system using catalyst-binding ligands. Nature, 1995, 373, 501-503.	27.8	158
12	Applications of ionic liquids in organic synthesis and catalysis. Clean Technologies and Environmental Policy, 2014, 16, 1487-1513.	4.1	143
13	Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst. Catalysis Science and Technology, 2012, 2, 1051.	4.1	134
14	Lipase: A potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour and Fragrance Journal, 2013, 28, 71-83.	2.6	134
15	Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism. Green Chemistry, 2001, 3, 87-91.	9.0	127
16	Palladium-Catalyzed Carbon-Monoxide-Free Aminocarbonylation of Aryl Halides Using N-Substituted Formamides as an Amide Source. Journal of Organic Chemistry, 2011, 76, 5489-5494.	3.2	121
17	Nâ€Heterocyclic Olefins as Robust Organocatalyst for the Chemical Conversion of Carbon Dioxide to Valueâ€Added Chemicals. ChemSusChem, 2016, 9, 1980-1985.	6.8	118
18	Transesterification of urea and ethylene glycol to ethylene carbonate as an important step for urea based dimethyl carbonate synthesis. Green Chemistry, 2003, 5, 429.	9.0	117

#	Article	IF	CITATIONS
19	Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chemistry, 2003, 5, 340.	9.0	112
20	Immobilized Palladium Metal-Containing Ionic Liquid-Catalyzed Alkoxycarbonylation, Phenoxycarbonylation, and Aminocarbonylation Reactions. ACS Catalysis, 2013, 3, 287-293.	11.2	110
21	State-of-the-art catechol porphyrin COF catalyst for chemical fixation of carbon dioxide via cyclic carbonates and oxazolidinones. Catalysis Science and Technology, 2016, 6, 6152-6158.	4.1	104
22	Pd/C: An Efficient, Heterogeneous and Reusable Catalyst for Phosphaneâ€Free Carbonylative Suzuki Coupling Reactions of Aryl and Heteroaryl Iodides. European Journal of Organic Chemistry, 2010, 2010, 6981-6986.	2.4	103
23	Bifunctional Ionic Liquids Derived from Biorenewable Sources as Sustainable Catalysts for Fixation of Carbon Dioxide. ChemSusChem, 2017, 10, 1145-1151.	6.8	98
24	KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki–Miyaura cross-coupling. Green Chemistry, 2016, 18, 5890-5899.	9.0	94
25	Low temperature recyclable catalyst for Heck reactions using ultrasound. Tetrahedron Letters, 2005, 46, 2483-2485.	1.4	89
26	Palladium bis (2,2,6,6-tetramethyl-3,5-heptanedionate): an efficient catalyst for regioselective C-2 arylation of heterocycles. Tetrahedron Letters, 2008, 49, 1045-1048.	1.4	89
27	Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using [Bmim]OH as a homogeneous recyclable catalyst. Catalysis Today, 2009, 148, 355-360.	4.4	89
28	A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid. Fuel Processing Technology, 2020, 197, 106213.	7.2	89
29	Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate) catalyzed Suzuki, Heck, Sonogashira, and cyanation reactions. Tetrahedron, 2008, 64, 3655-3660.	1.9	87
30	$Y(NO3)3\hat{A}\cdot 6H2O$: A novel and reusable catalyst for one pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Journal of Molecular Catalysis A, 2007, 271, 14-17.	4.8	82
31	Palladium on Carbon: An Efficient, Heterogeneous and Reusable Catalytic System for Carbonylative Synthesis of <i>N</i> â€Substituted Phthalimides. Advanced Synthesis and Catalysis, 2011, 353, 3415-3422.	4.3	79
32	Immobilization of Candida cylindracea lipase on poly lactic acid, polyvinyl alcohol and chitosan based ternary blend film: Characterization, activity, stability and its application for N-acylation reactions. Process Biochemistry, 2013, 48, 1335-1347.	3.7	79
33	Pd/C: an efficient, heterogeneous and reusable catalyst for carbon monoxide-free aminocarbonylation of aryl iodides. Tetrahedron Letters, 2008, 49, 2221-2224.	1.4	78
34	Title is missing!. Catalysis Letters, 2002, 79, 95-98.	2.6	77
35	Cyanidesâ€Free Cyanation of Aryl Halides using Formamide. Advanced Synthesis and Catalysis, 2011, 353, 781-787.	4.3	77
36	Recent Advances Utilized in the Recycling of Homogeneous Catalysis. Chemical Record, 2019, 19, 2022-2043.	5.8	77

#	Article	IF	Citations
37	Kinetics of hydroformylation of l-dodecene using homogeneous HRh(CO) (PPh3)3 catalyst. Journal of Molecular Catalysis A, 1997, 115, 247-257.	4.8	76
38	Hybrid Amineâ€Functionalized Graphene Oxide as a Robust Bifunctional Catalyst for Atmospheric Pressure Fixation of Carbon Dioxide using Cyclic Carbonates. ChemSusChem, 2016, 9, 644-650.	6.8	75
39	Cesium carbonate catalyzed efficient synthesis of quinazoline-2,4(1 <i>H</i> ,3 <i>H</i>)-diones using carbon dioxide and 2-aminobenzonitriles. Green Chemistry Letters and Reviews, 2008, 1, 127-132.	4.7	74
40	Ag@AgCl Nanomaterial Synthesis Using Sugar Cane Juice and Its Application in Degradation of Azo Dyes. ACS Sustainable Chemistry and Engineering, 2014, 2, 1007-1013.	6.7	74
41	Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids. Catalysis Communications, 2004, 5, 83-87.	3.3	73
42	Direct reductive amination of carbonyl compounds with primary/secondary amines using recyclable water-soluble FeII/EDTA complex as catalyst. Tetrahedron Letters, 2008, 49, 965-969.	1.4	72
43	Oxidative Aminocarbonylation of Terminal Alkynes for the Synthesis of Alkâ€2â€ynamides by Using Palladiumâ€onâ€Carbon as Efficient, Heterogeneous, Phosphineâ€Free, and Reusable Catalyst. Advanced Synthesis and Catalysis, 2012, 354, 2049-2056.	4.3	72
44	Palladacycle-Catalyzed Carbonylative Suzuki–Miyaura Coupling with High Turnover Number and Turnover Frequency. Journal of Organic Chemistry, 2015, 80, 7810-7815.	3.2	72
45	Pd/C-Catalyzed Aminocarbonylation of Aryl Iodides via Oxidative C–N Bond Activation of Tertiary Amines to Tertiary Amides. Journal of Organic Chemistry, 2016, 81, 1223-1228.	3.2	71
46	Aminocarbonylation of aryl iodides with primary and secondary amines in aqueous medium using polymer supported palladium-N-heterocyclic carbene complex as an efficient and heterogeneous recyclable catalyst. Catalysis Today, 2012, 198, 148-153.	4.4	70
47	Synthesis of geranyl acetate in non-aqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: Kinetic modelling and chain length effect study. Process Biochemistry, 2014, 49, 1304-1313.	3.7	70
48	Silver nanoparticles as an efficient, heterogeneous and recyclable catalyst for synthesis of \hat{l}^2 -enaminones. Catalysis Communications, 2010, 11, 1233-1237.	3.3	69
49	Bifunctional lonic Liquids for the Multitask Fixation of Carbon Dioxide into Valuable Chemicals. ChemCatChem, 2016, 8, 244-250.	3.7	69
50	Ru(<scp>ii</scp>)/PEG-400 as a highly efficient and recyclable catalytic media for annulation and olefination reactions via C–H bond activation. Green Chemistry, 2016, 18, 5635-5642.	9.0	69
51	Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renewable and Sustainable Energy Reviews, 2019, 102, 266-284.	16.4	69
52	One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide. Catalysis Today, 2004, 93-95, 383-388.	4.4	68
53	Silver Nanoparticles: Synthesis, Characterization and their Application as a Sustainable Catalyst for Organic Transformations. Current Organic Chemistry, 2015, 19, 708-727.	1.6	68
54	Title is missing!. Catalysis Letters, 1999, 62, 175-177.	2.6	67

#	Article	IF	Citations
55	Thermo-chemical energy assessment for production of energy-rich fuel additive compounds by using levulinic acid and immobilized lipase. Fuel Processing Technology, 2015, 138, 139-146.	7.2	67
56	Multiphase catalysis using water-soluble metal complexes in supercritical carbon dioxide. Chemical Communications, 1999, , 1277-1278.	4.1	66
57	Title is missing!. Catalysis Letters, 2002, 83, 137-141.	2.6	66
58	N-Arylation of aliphatic, aromatic and heteroaromatic amines catalyzed by copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate). Tetrahedron Letters, 2007, 48, 6573-6576.	1.4	65
59	Amine functionalized MCM-41 as a green, efficient, and heterogeneous catalyst for the regioselective synthesis of 5-aryl-2-oxazolidinones, from CO2 and aziridines. Applied Catalysis A: General, 2014, 469, 340-349.	4.3	65
60	Heck reactions using water-soluble metal complexes in supercritical carbon dioxide. Tetrahedron Letters, 1999, 40, 6427-6430.	1.4	64
61	PS-Pd–NHC: an efficient and heterogeneous recyclable catalyst for direct reductive amination of carbonyl compounds with primary/secondary amines in aqueous medium. Catalysis Science and Technology, 2012, 2, 354-358.	4.1	64
62	Immobilized Iron Metal-Containing Ionic Liquid-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes into Anilines. ACS Sustainable Chemistry and Engineering, 2016, 4, 429-436.	6.7	64
63	Amine-Functionalized Graphene Oxide-Stabilized Pd Nanoparticles (Pd@APGO): A Novel and Efficient Catalyst for the Suzuki and Carbonylative Suzuki–Miyaura Coupling Reactions. ACS Omega, 2019, 4, 643-649.	3.5	64
64	Phosphaneâ€Free Palladiumâ€Catalyzed Carbonylative Suzuki Coupling Reaction of Aryl and Heteroaryl Iodides. European Journal of Organic Chemistry, 2009, 2009, 3022-3025.	2.4	63
65	Effect of triphenylphosphine concentration on the kinetics of homogeneous Heck reaction in different solvents. Journal of Molecular Catalysis A, 1999, 142, 383-388.	4.8	62
66	Polymer supported diol functionalized ionic liquids: An efficient, heterogeneous and recyclable catalyst for 5-aryl-2-oxazolidinones synthesis from CO2 and aziridines under mild and solvent free condition. Journal of Molecular Catalysis A, 2011, 351, 196-203.	4.8	62
67	A simple approach for sonochemical synthesis of Cu 2 O nanoparticles with high catalytic properties. Advanced Powder Technology, 2016, 27, 238-244.	4.1	62
68	A facile and rapid route for the synthesis of Cu/Cu ₂ O nanoparticles and their application in the Sonogashira coupling reaction of acyl chlorides with terminal alkynes. Catalysis Science and Technology, 2014, 4, 4274-4280.	4.1	61
69	Y(NO3)3·6H2O catalyzed regioselective ring opening of epoxides with aliphatic, aromatic, and heteroaromatic amines. Tetrahedron Letters, 2008, 49, 3672-3676.	1.4	60
70	Synthesis of Quinazoline-2,4(1H,3H)-Diones from Carbon dioxide and 2-Aminobenzonitriles Using MgO/ZrO2 as a Solid Base Catalyst. Catalysis Letters, 2009, 133, 201-208.	2.6	60
71	Heck reactions with various types of palladium complex catalysts: application of multiphase catalysis and supercritical carbon dioxide. Journal of Organometallic Chemistry, 2003, 687, 211-218.	1.8	59
72	Silica supported polyvinyl pyridine as a highly active heterogeneous base catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of Molecular Catalysis A, 2007, 266, 69-74.	4.8	59

#	Article	IF	CITATIONS
73	Promiscuous Candida antarctica lipase B-catalyzed synthesis of \hat{l}^2 -amino esters via aza-Michael addition of amines to acrylates. Tetrahedron Letters, 2010, 51, 4455-4458.	1.4	58
74	Ru@PslLâ€Catalyzed Synthesis of <i>N</i> àâ€Formamides and Benzimidazole by using Carbon Dioxide and Dimethylamine Borane. ChemCatChem, 2018, 10, 2593-2600.	3.7	58
75	An efficient and heterogeneous recyclable palladium catalyst for chemoselective conjugate reduction of $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyls in aqueous medium. Green Chemistry, 2011, 13, 1490.	9.0	57
76	Improved activity and stability of Rhizopus oryzae lipase via immobilization for citronellol ester synthesis in supercritical carbon dioxide. Journal of Biotechnology, 2011, 156, 46-51.	3.8	57
77	A rapid, one pot microwave assisted synthesis of nanosize cuprous oxide. Powder Technology, 2013, 235, 516-519.	4.2	57
78	Synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol using poly-4-vinyl pyridine as a novel base catalyst. Catalysis Communications, 2008, 9, 1928-1931.	3.3	56
79	N-Substituted Formamides as C1-Sources for the Synthesis of Benzimidazole and Benzothiazole Derivatives by Using Zinc Catalysts. Synlett, 2015, 26, 2835-2842.	1.8	56
80	$Y(NO3)3\hat{A}\cdot 6H2O$ catalyzed aza-Michael addition of aromatic/hetero-aromatic amines under solvent-free conditions. Catalysis Communications, 2008, 9, 1189-1195.	3.3	54
81	Microwave ECR plasma CVD of cubic Y2O3 coatings and their characterization. Surface and Coatings Technology, 2010, 204, 3167-3172.	4.8	54
82	HPMC-PVA Film Immobilized <i>Rhizopus oryzae</i> Lipase as a Biocatalyst for Transesterification Reaction. ACS Catalysis, 2011, 1, 316-322.	11.2	54
83	The green metric evaluation and synthesis of diesel-blend compounds from biomass derived levulinic acid in supercritical carbon dioxide. Biomass and Bioenergy, 2016, 84, 12-21.	5.7	54
84	Application of lipase immobilized on the biocompatible ternary blend polymer matrix for synthesis of citronellyl acetate in non-aqueous media: Kinetic modelling study. Enzyme and Microbial Technology, 2014, 57, 16-25.	3.2	52
85	Kinetic Resolution Driven Diastereo- and Enantioselective Synthesis of cis-Î ² -Heteroaryl Amino Cycloalkanols by Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation. Organic Letters, 2016, 18, 6436-6439.	4.6	52
86	Non-catalytic clean synthesis route using urea to cyclic urea and cyclic urethane compounds. Green Chemistry, 2004, 6, 78.	9.0	51
87	Mesoporous smectites incorporated with alkali metal cations as solid base catalysts. Applied Catalysis A: General, 2006, 313, 151-159.	4.3	51
88	Direct reductive amination of carbonyl compounds using bis(triphenylphosphine) copper(I) tetrahydroborate. Tetrahedron Letters, 2007, 48, 1273-1276.	1.4	51
89	Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in Claisen–Schmidt condensation. Catalysis Communications, 2013, 36, 79-83.	3.3	51
90	Immobilization of lipase on biocompatible co-polymer of polyvinyl alcohol and chitosan for synthesis of laurate compounds in supercritical carbon dioxide using response surface methodology. Process Biochemistry, 2015, 50, 1224-1236.	3.7	51

#	Article	IF	CITATIONS
91	Catalysis with soluble complexes in gas-liquid-liquid systems. Catalysis Today, 1995, 24, 123-133.	4.4	50
92	Nickel, Cobalt and Palladium Catalysed Câ^'H Functionalization of Unâ€Activated C(sp ³)â^'H Bond. Chemical Record, 2019, 19, 1829-1857.	5 . 8	49
93	Candida antarctica lipase B-catalyzed synthesis of acetamides using [BMIm(PF6)] as a reaction medium. Tetrahedron Letters, 2009, 50, 2811-2814.	1.4	48
94	A facile one-step approach for the synthesis of uniform spherical Cu/Cu ₂ O nano- and microparticles with high catalytic activity in the Buchwald–Hartwig amination reaction. RSC Advances, 2014, 4, 15122-15130.	3 . 6	48
95	Magnetically separable \hat{I}^3 -Fe2O3 nanoparticles: An efficient catalyst for acylation of alcohols, phenols, and amines using sonication energy under solvent free condition. Journal of Molecular Catalysis A, 2015, 404-405, 8-17.	4.8	48
96	<i>tert</i> -Butyl Nitrite-Mediated Synthesis of <i>N</i> -Nitrosoamides, Carboxylic Acids, Benzocoumarins, and Isocoumarins from Amides. Journal of Organic Chemistry, 2017, 82, 5769-5781.	3.2	48
97	Heterogeneous catalyst system for Heck reaction using supported ethylene glycol phase Pd/TPPTS catalyst with inorganic base. Journal of Molecular Catalysis A, 1999, 145, 69-74.	4.8	47
98	Amine functionalized MCM-41: an efficient heterogeneous recyclable catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles in water. Catalysis Science and Technology, 2014, 4, 1608-1614.	4.1	47
99	Synthesis of 2-oxazolidinones/2-imidazolidinones from CO2, different epoxides and amino alcohols/alkylene diamines using Brâ^'Ph3+P-PEG600-P+Ph3Brâ^' as homogenous recyclable catalyst. Journal of Molecular Catalysis A, 2008, 289, 14-21.	4.8	46
100	Palladium-Catalyzed Deaminative Phenanthridinone Synthesis from Aniline via C–H Bond Activation. Journal of Organic Chemistry, 2016, 81, 4103-4111.	3.2	46
101	Enhanced biocatalytic activity of immobilized Pseudomonas cepacia lipase under sonicated condition. Bioprocess and Biosystems Engineering, 2016, 39, 211-221.	3.4	46
102	Mechanistic aspects of formation of MgO nanoparticles under microwave irradiation and its catalytic application. Advanced Powder Technology, 2017, 28, 1185-1192.	4.1	46
103	Pd/C catalyzed phenoxycarbonylation using N-formylsaccharin as a CO surrogate in propylene carbonate, a sustainable solvent. Green Chemistry, 2017, 19, 823-830.	9.0	46
104	Comparison of activity and selectivity of various metal-TPPTS complex catalysts in ethylene glycol î—, toluene biphasic Heck vinylation reactions of iodobenzene. Tetrahedron Letters, 1998, 39, 9509-9512.	1.4	45
105	Efficient, recyclable and phosphine-free carbonylative Suzuki coupling reaction using immobilized palladium ion-containing ionic liquid: synthesis of aryl ketones and heteroaryl ketones. RSC Advances, 2013, 3, 7791.	3.6	45
106	Polythene glycol (PEG) as a reusable solvent system for the synthesis of 1,3,5-triazines via aerobic oxidative tandem cyclization of benzylamines and N-substituted benzylamines with amidines under transition metal-free conditions. Green Chemistry, 2016, 18, 144-149.	9.0	45
107	Carbonylative Tertiary Amide Synthesis from Aryl Iodides and Tertiary Amines ⟨i>via⟨ i> Oxidantâ€Free Câ^`N Bond Cleavage Catalyzed by Palladium(II) Chloride in Polyethylene Glycol/Water. Advanced Synthesis and Catalysis, 2017, 359, 2621-2629.	4.3	45
108	Ultrasound assisted additive free synthesis of nanocrystalline zinc oxide. Ultrasonics Sonochemistry, 2011, 18, 54-58.	8.2	44

#	Article	IF	CITATIONS
109	Double Carbonylation Reactions: Overview and Recent Advances. Advanced Synthesis and Catalysis, 2020, 362, 3022-3058.	4.3	44
110	Synthesis of cyclic carbonates from carbon dioxide and epoxides using alkali metal halide supported liquid phase catalyst. Catalysis Letters, 2006, 112, 51-55.	2.6	42
111	Bronsted acidic ionic liquid as an efficient and reusable catalyst for transesterification of \hat{l}^2 -ketoesters. Catalysis Communications, 2009, 10, 833-837.	3.3	42
112	Silica supported palladium-phosphine as a reusable catalyst for alkoxycarbonylation and aminocarbonylation of aryl and heteroaryl iodides. RSC Advances, 2015, 5, 94776-94785.	3.6	42
113	N â€Methoxybenzamide: A Versatile Directing Group for Palladiumâ€, Rhodiumâ€and Rutheniumâ€Catalyzed Câ~H Bond Activations. Advanced Synthesis and Catalysis, 2019, 361, 4149-4195.	4.3	42
114	Transesterification of dimethyl carbonate with phenol using BrÃ,nsted and Lewis acidic ionic liquids. Catalysis Communications, 2010, 12, 207-211.	3.3	41
115	Nanosize Co3O4 as a novel, robust, efficient and recyclable catalyst for A3-coupling reaction of propargylamines. Catalysis Communications, 2011, 16, 114-119.	3.3	41
116	Pd/C-Catalyzed Synthesis of Oxamates by Oxidative Cross Double Carbonylation of Amines and Alcohols under Co-catalyst, Base, Dehydrating Agent, and Ligand-Free Conditions. Journal of Organic Chemistry, 2013, 78, 6793-6797.	3.2	41
117	Enhanced Biocatalytic Activity of Lipase Immobilized on Biodegradable Copolymer of Chitosan and Polyvinyl Alcohol Support for Synthesis of Propionate Ester: Kinetic Approach. Industrial & Engineering Chemistry Research, 2014, 53, 18806-18815.	3.7	41
118	Rapid synthesis of nickel oxide nanorods and its applications in catalysis. Advanced Powder Technology, 2015, 26, 422-427.	4.1	41
119	Additive free microwave assisted synthesis of nanocrystalline Mg(OH)2 and MgO. Particuology, 2012, 10, 384-387.	3.6	40
120	Palladium-catalyzed Heck coupling reactions using different fluorinated phosphine ligands in compressed carbon dioxide and conventional organic solvents. Journal of Molecular Catalysis A, 2002, 180, 35-42.	4.8	39
121	An efficient, catalyst- and solvent-free $<$ i>N $<$ /i>-formylation of aromatic and aliphatic amines. Green Chemistry Letters and Reviews, 2011, 4, 151-157.	4.7	39
122	Recent trends in organocatalyzed asymmetric reduction of prochiral ketones. Catalysis Science and Technology, 2018, 8, 955-969.	4.1	39
123	Synthesis of 1,3-dialkylurea from ethylene carbonate and amine using calcium oxide. Journal of Molecular Catalysis A, 2005, 230, 43-48.	4.8	38
124	Microwave-assisted additive free synthesis of nanocrystalline zinc oxide. Powder Technology, 2010, 203, 415-418.	4.2	38
125	Regioselective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines using Brâ^'Ph3+PPEG600P+Ph3Brâ^' as an efficient, homogenous recyclable catalyst at ambient conditions. Tetrahedron Letters, 2011, 52, 6383-6387.	1.4	38
126	Synthesis of powdered silver nanoparticles using hydrogen in aqueous medium. Particuology, 2012, 10, 140-143.	3.6	38

#	Article	IF	CITATIONS
127	Transition Metal-Catalyzed Carbonylative CH Bond Functionalization of Arenes and C(sp3)H Bond of Alkanes. Chemical Record, 2016, 16, 835-856.	5.8	38
128	Ultrasound promoted regioselective nitration of phenols using dilute nitric acid in the presence of phase transfer catalyst. Ultrasonics Sonochemistry, 2007, 14, 41-45.	8.2	37
129	Amberlystâ€15 in Ionic Liquid: An Efficient and Recyclable Reagent for Nucleophilic Substitution of Alcohols and Hydroamination of Alkenes. European Journal of Organic Chemistry, 2010, 2010, 6233-6238.	2.4	37
130	One pot green synthesis of nano sized zinc oxide by sonochemical method. Materials Letters, 2012, 77, 93-95.	2.6	37
131	Immobilized palladium metal containing ionic liquid catalyzed one step synthesis of isoindole-1,3-diones by carbonylative cyclization reaction. Journal of Molecular Catalysis A, 2014, 385, 91-97.	4.8	37
132	Copper catalyzed nitrile synthesis from aryl halides using formamide as a nitrile source. RSC Advances, 2014, 4, 13405-13408.	3.6	37
133	Synthesis of oxamate and urea by oxidative single and double carbonylation of amines using immobilized palladium metal-containing ionic liquid@SBA-15. Journal of Molecular Catalysis A, 2015, 400, 170-178.	4.8	37
134	Carbonylative Synthesis of Phthalimides and Benzoxazinones by Using Phenyl Formate as a Carbon Monoxide Source. European Journal of Organic Chemistry, 2015, 2015, 2405-2410.	2.4	37
135	Palladium-Catalyzed Oxidative <i>N</i> -Dealkylation/Carbonylation of Tertiary Amines with Alkynes to $\hat{l}\pm,\hat{l}^2$ -Alkynylamides. Journal of Organic Chemistry, 2016, 81, 4974-4980.	3.2	37
136	An efficient synthesis of quinazoline-2,4(1H,3H)-dione from CO2 and 2-aminobenzonitrile using [Hmim]OH/SiO2 as a base functionalized Supported Ionic Liquid Phase Catalyst. Journal of CO2 Utilization, 2014, 8, 67-73.	6.8	36
137	Regioselective Hydroformylation of Allylic Alcohols Using Rh/PPh3Supported Ionic Liquid-Phase Catalyst, Followed by Hydrogenation to 1,4-Butanediol Using Ru/PPh3Supported Ionic Liquid-Phase Catalyst. Industrial & Description of Chemistry Research, 2008, 47, 969-972.	3.7	35
138	Enzymatic activity studies of Pseudomonas cepacia lipase adsorbed onto copolymer supports containing \hat{l}^2 -cyclodextrin. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 105-112.	1.8	35
139	Magnesium oxide as a heterogeneous and recyclable base for the N-methylation of indole and O-methylation of phenol using dimethyl carbonate as a green methylating agent. RSC Advances, 2014, 4, 50271-50276.	3.6	35
140	Synthesis of 2-phenylnaphthalenes from styrene oxides using a recyclable BrÃ,nsted acidic [HNMP] < sup > + < /sup > HSO < sub > 4 < /sub > < sup > â^2 < /sup > ionic liquid. Green Chemistry, 2015, 17, 4446-4451.	9.0	35
141	MnO ₂ catalyzed formylation of amines and transamidation of amides under solvent-free conditions. RSC Advances, 2015, 5, 80441-80449.	3.6	35
142	Room Temperature Synthesis of Copper Oxide Nanoparticles: Morphological Evaluation and Their Catalytic Applications for Degradation of Dyes and C–N Bond Formation Reaction. ChemistrySelect, 2016, 1, 6297-6307.	1.5	35
143	Pd/C in Propylene Carbonate: A Sustainable Catalyst–Solvent System for the Carbonylative Suzuki–Miyaura Crossâ€Coupling Using <i>N</i> â€Formylsaccharin as a CO Surrogate. European Journal of Organic Chemistry, 2017, 2017, 3431-3437.	2.4	35
144	Palladium anchored on amine-functionalized K10 as an efficient, heterogeneous and reusable catalyst for carbonylative Sonogashira reaction. Applied Catalysis A: General, 2015, 506, 237-245.	4.3	34

#	Article	lF	Citations
145	Shape-selective synthesis of gold nanoparticles and their catalytic activity towards reduction of p -nitroaniline. Nano Structures Nano Objects, 2018, 14, 125-130.	3.5	34
146	Carbon dioxide: a renewable feedstock for the synthesis of fine and bulk chemicals. Frontiers of Chemical Engineering in China, 2010, 4, 213-235.	0.6	33
147	Copperâ€Catalyzed Synthesis of Nitriles by Aerobic Oxidative Reaction of Alcohols and Ammonium Formate. European Journal of Organic Chemistry, 2013, 2013, 5106-5110.	2.4	33
148	Synthesis of lipase nano-bio-conjugates as an efficient biocatalyst: characterization and activityâ€"stability studies with potential biocatalytic applications. RSC Advances, 2015, 5, 55238-55251.	3.6	33
149	Lipase immobilization on hyroxypropyl methyl cellulose support and its applications for chemo-selective synthesis of \hat{l}^2 -amino ester compounds. Process Biochemistry, 2016, 51, 1420-1433.	3.7	33
150	Amine modified mesoporous Al ₂ O ₃ @MCM-41: an efficient, synergetic and recyclable catalyst for the formylation of amines using carbon dioxide and DMAB under mild reaction conditions. Catalysis Science and Technology, 2016, 6, 4872-4881.	4.1	33
151	A rapid, one step microwave assisted synthesis of nanosize zinc oxide. Materials Letters, 2012, 69, 66-68.	2.6	32
152	The combine use of ultrasound and lipase immobilized on co-polymer matrix for efficient biocatalytic application studies. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 255-264.	1.8	32
153	B(C < sub > 6 < sub > F < sub > 5 < sub > 3 < sub > 3 < sub > 2 < sub > 3 < sub > 2 < sub > 3 < sub > 2 < sub > 3 <	2.8	32
154	FeCl3/PPh3-catalyzed Sonogashira coupling reaction of aryl iodides with terminal alkynes. Tetrahedron Letters, 2010, 51, 2758-2761.	1.4	31
155	Pd/C-catalyzed facile synthesis of primary aromatic amides by aminocarbonylation of aryl iodides using ammonia surrogates. RSC Advances, 2015, 5, 76122-76127.	3.6	31
156	Cp*Co(<scp>iii</scp>)-catalyzed annulation of azines by Câ€"H/Nâ€"N bond activation for the synthesis of isoquinolines. Organic and Biomolecular Chemistry, 2019, 17, 3489-3496.	2.8	31
157	Cu@U-g-C3N4 Catalyzed Cyclization of o-Phenylenediamines for the Synthesis of Benzimidazoles by Using CO2 and Dimethylamine Borane as a Hydrogen Source. Catalysis Letters, 2019, 149, 347-359.	2.6	31
158	Kinetics of Hydroformylation of Ethylene in a Homogeneous Medium:Â Comparison in Organic and Aqueous Systems. Industrial & Engineering Chemistry Research, 1998, 37, 2391-2396.	3.7	30
159	Heterogeneous base catalyzed synthesis of 2-oxazolidinones/2-imidiazolidinones via transesterification of ethylene carbonate with \hat{I}^2 -aminoalcohols/1,2-diamines. Applied Catalysis A: General, 2008, 341, 133-138.	4.3	30
160	BrÃ, nsted acidic ionic liquid: a simple, efficient and recyclable catalyst for regioselective alkylation of phenols and anti-Markovnikov addition of thiols to alkenes. RSC Advances, 2011, 1, 1106.	3.6	30
161	Carbon Monoxideâ€Free Oneâ€Step Synthesis of Isoindoleâ€1,3â€diones by Cycloaminocarbonylation of <i>o</i> à6Haloarenes Using Formamides. European Journal of Organic Chemistry, 2011, 2011, 6719-6724.	2.4	30
162	Selective and efficient synthesis of decahedral palladium nanoparticles and its catalytic performance for Suzuki coupling reaction. Journal of Molecular Catalysis A, 2012, 365, 146-153.	4.8	30

#	Article	IF	CITATIONS
163	Rhodium catalyzed cyanide-free cyanation of aryl halide by using formamide as a cyanide source. Tetrahedron Letters, 2013, 54, 2682-2684.	1.4	30
164	N-arylation of indoles with aryl halides using copper/glycerol as a mild and highly efficient recyclable catalytic system. Tetrahedron Letters, 2014, 55, 931-935.	1.4	30
165	Combining Electronic and Steric Effects To Generate Hindered Propargylic Alcohols in High Enantiomeric Excess. Organic Letters, 2018, 20, 975-978.	4.6	30
166	Hydrogenation of \hat{l} ±, \hat{l} ² -Unsaturated Carbonyl Compounds Using Recyclable Water-Soluble FeII/EDTA Complex Catalyst. Catalysis Letters, 2008, 124, 157-164.	2.6	29
167	One-pot electrochemical synthesis of palladium nanoparticles and their application in the Suzuki reaction. New Journal of Chemistry, 2011, 35, 2747.	2.8	29
168	Transfer hydrogenation of nitroarenes into anilines by palladium nanoparticles via dehydrogenation of dimethylamine borane complex. RSC Advances, 2015, 5, 86529-86535.	3.6	29
169	NIS-catalyzed oxidative cyclization of alcohols with amidines: a simple and efficient transition-metal free method for the synthesis of $1,3,5$ -triazines. Organic and Biomolecular Chemistry, 2015, 13, 10973-10976.	2.8	28
170	Carbohydrate base co-polymers as an efficient immobilization matrix to enhance lipase activity for potential biocatalytic applications. Carbohydrate Polymers, 2015, 134, 709-717.	10.2	28
171	Enhanced biocatalytic activity of immobilized steapsin lipase in supercritical carbon dioxide for production of biodiesel using waste cooking oil. Bioprocess and Biosystems Engineering, 2019, 42, 47-61.	3.4	28
172	Selectivity in Sulfonation of Triphenyl Phosphine. Organic Process Research and Development, 2000, 4, 342-345.	2.7	27
173	Palladium bis(2,2,6,6â€ŧetramethylâ€3,5â€heptanedionate) catalyzed alkoxycarbonylation and aminocarbonylation reactions. Applied Organometallic Chemistry, 2009, 23, 235-240.	3 . 5	27
174	NiO nanoparticles catalyzed three component coupling reaction of aldehyde, amine and terminal alkynes. Catalysis Communications, 2015, 72, 174-179.	3.3	27
175	Immobilization of Rhizomucor miehei lipase on a polymeric film for synthesis of important fatty acid esters: kinetics and application studies. Bioprocess and Biosystems Engineering, 2017, 40, 1463-1478.	3.4	27
176	Green syntheses of levulinate esters using ionic liquid 1-Methyl imidazolium hydrogen sulphate [MIM][HSO4] in solvent free system. Journal of Molecular Liquids, 2019, 281, 70-80.	4.9	27
177	Cation exchange resin catalyzed hydroamination of vinylpyridines with aliphatic/aromatic amines. Catalysis Communications, 2008, 9, 425-430.	3.3	26
178	Pd/C: an efficient and heterogeneous protocol for oxidative carbonylation of diols to cyclic carbonate. Tetrahedron Letters, 2014, 55, 1199-1202.	1.4	26
179	Chiral phosphoric acid catalyzed asymmetric transfer hydrogenation of quinolines in a sustainable solvent. Tetrahedron: Asymmetry, 2015, 26, 1174-1179.	1.8	26
180	Reductive amination of levulinic acid to N-substituted pyrrolidones over RuCl3 metal ion anchored in ionic liquid immobilized on graphene oxide. Journal of Catalysis, 2020, 383, 206-214.	6.2	26

#	Article	IF	Citations
181	Activity of HRh(CO)(PPh3)3 catalyst in hydroformylation of allyl alcohol: Effect of second immiscible liquid phase. Journal of Molecular Catalysis, 1992, 75, L19-L22.	1.2	25
182	Hydroformylation of 1-hexene catalyzed with rhodium fluorinated phosphine complexes in supercritical carbon dioxide and in conventional organic solvents: effects of ligands and pressures. New Journal of Chemistry, 2002, 26, 1479-1484.	2.8	25
183	Cu(acac)2 catalyzed oxidative C–H bond amination of azoles with amines under base-free conditions. Tetrahedron Letters, 2012, 53, 6500-6503.	1.4	25
184	Amberlyst- $15\hat{A}$ ©: An efficient heterogeneous reusable catalyst for selective anti-Markovnikov addition of thiols to alkenes/alkynes and for thiolysis of epoxides. Catalysis Communications, 2013, 41, 29-33.	3.3	25
185	The Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Polyvinyl Alcohol and Hypromellose. Journal of Physical Chemistry B, 2014, 118, 141204044218007.	2.6	25
186	Morphological study of microwave-assisted facile synthesis of gold nanoflowers/nanoparticles in aqueous medium and their catalytic application for reduction of p-nitrophenol to p-aminophenol. RSC Advances, 2015, 5, 52817-52823.	3.6	25
187	Kinetic modeling and docking study of immobilized lipase catalyzed synthesis of furfuryl acetate. Enzyme and Microbial Technology, 2016, 84, 1-10.	3.2	25
188	An Efficient Protocol for Formylation of Amines Using Carbon Dioxide and PMHS under Transition-Metal-Free Conditions. Synlett, 2016, 27, 1413-1417.	1.8	25
189	Heck reaction with a silica-supported Pd-TPPTS liquid phase catalyst: effects of reaction conditions and various amines on the reaction rate. Journal of Molecular Catalysis A, 2002, 188, 37-43.	4.8	24
190	Reductive carbonylation of aryl and heteroaryl iodides using Pd(acac)2/dppm as an efficient catalyst. Tetrahedron Letters, 2011, 52, 2383-2386.	1.4	24
191	Direct allylic amination of allylic alcohols with aromatic/aliphatic amines using Pd/TPPTS as an aqueous phase recyclable catalyst. Catalysis Science and Technology, 2012, 2, 835.	4.1	24
192	Metal-free N-iodosuccinimide-catalyzed mild oxidative C–H bond amination of benzoxazoles. Tetrahedron Letters, 2012, 53, 3482-3485.	1.4	24
193	Synthesis of $\hat{l}\pm,\hat{l}^2$ -Alkynyl Esters and Unsymmetrical Maleate Esters Catalyzed by Pd/C; An Efficient Phosphine-Free Catalytic System for Oxidative Alkoxycarbonylation of Terminal Alkynes. Synlett, 2013, 24, 981-986.	1.8	24
194	Palladiumâ€Catalyzed Oxidative Synthesis of Aromatic Ketones Using Olefins as Acyl Equivalents through Selective <i>ortho</i> Aromatic C–H Bond Activation. European Journal of Organic Chemistry, 2014, 2014, 6746-6752.	2.4	24
195	Copper-catalyzed synthesis of benzoxazoles via tandem cyclization of 2-halophenols with amidines. Organic and Biomolecular Chemistry, 2016, 14, 7920-7926.	2.8	24
196	Solventâ€Switchable Regioselective Synthesis of Aurones and Flavones Using Palladiumâ€Supported Amineâ€Functionalized Montmorillonite as a Heterogeneous Catalyst. ChemCatChem, 2016, 8, 2649-2658.	3.7	24
197	Ultrasound Assisted Synthesis of Gold Nanoparticles as an Efficient Catalyst for Reduction of Various Nitro Compounds. ChemistrySelect, 2017, 2, 1225-1231.	1.5	24
198	Aminophosphine Palladium Pincer-Catalyzed Carbonylative Sonogashira and Suzuki–Miyaura Cross-Coupling with High Catalytic Turnovers. ACS Omega, 2019, 4, 1560-1574.	3.5	24

#	Article	IF	Citations
199	Rhodium–tris(3,5-bis(trifluoromethyl)phenyl)phosphine catalyzed hydroformylation of dienes to dialdehydes in supercritical carbon dioxide with high activity. Tetrahedron Letters, 2004, 45, 1307-1310.	1.4	23
200	Effects of precursor evaporation temperature on the properties of the yttrium oxide thin films deposited by microwave electron cyclotron resonance plasma assisted metal organic chemical vapor deposition. Thin Solid Films, 2011, 519, 3011-3020.	1.8	23
201	Solar energy assisted palladium nanoparticles synthesis in aqueous medium. Materials Letters, 2012, 79, 1-3.	2.6	23
202	Investigation of steapsin lipase for kinetic resolution of secondary alcohols and synthesis of valuable acetates in non-aqueous reaction medium. Journal of Molecular Catalysis B: Enzymatic, 2012, 77, 15-23.	1.8	23
203	Shape selectivity using ionic liquids for the preparation of silver and silver sulphide nanomaterials. Physical Chemistry Chemical Physics, 2014, 16, 3027.	2.8	23
204	Copper-catalyzed efficient synthesis of a 2-benzimidazolone scaffold from 2-nitroaniline and dimethyl carbonate via a hydrosilylation reaction. Green Chemistry, 2015, 17, 2480-2486.	9.0	23
205	Investigation of deactivation thermodynamics of lipase immobilized on polymeric carrier. Bioprocess and Biosystems Engineering, 2017, 40, 741-757.	3.4	23
206	Iron catalyzed efficient synthesis of 2-arylbenzothiazoles from benzothiazole and olefins using environmentally benign molecular oxygen as oxidant. RSC Advances, 2014, 4, 8939-8942.	3.6	22
207	An Electrochemical Method for Carboxylic Ester Synthesis from <i>N</i> -Alkoxyamides. Journal of Organic Chemistry, 2017, 82, 10025-10032.	3.2	22
208	Reductive-hydroformylation of 1-octene to nonanol using fibrous Co 3 O 4 catalyst. Catalysis Today, 2018, 309, 147-152.	4.4	22
209	Amberlyst- $15\hat{A}^{\otimes}$ in ionic liquid: an efficient and recyclable reagent for the benzylation and hydroalkylation of \hat{I}^2 -dicarbonyl compounds. Tetrahedron Letters, 2010, 51, 724-729.	1.4	21
210	Palladium polyether diphosphinite complex anchored in polyethylene glycol as an efficient homogeneous recyclable catalyst for the Heck reactions. Tetrahedron Letters, 2011, 52, 2390-2393.	1.4	21
211	Selective hydroformylation–acetalization of various olefins using simple and efficient Rh-phosphinite complex catalyst. Tetrahedron Letters, 2013, 54, 5998-6001.	1.4	21
212	Greener approach for the synthesis of substituted alkenes by direct coupling of alcohols with styrenes using recyclable Bronsted acidic [NMP]+HSO4â ⁻² ionic liquid. RSC Advances, 2014, 4, 22763-22767.	3.6	21
213	Greener, Recyclable, and Reusable Ruthenium(III) Chloride/Polyethylene Glycol/Water System for the Selective Hydrogenation of Biomassâ€Derived Levulinic Acid to γâ€Valerolactone. ChemCatChem, 2016, 8, 3458-3462.	3.7	21
214	Oxime Palladacycle Catalyzed Carbonylative Sonogashira Crossâ€Coupling with High Turnovers in PEG as a Benign and Recyclable Solvent System. ChemistrySelect, 2016, 1, 5463-5470.	1.5	21
215	Molecular Iodine Catalysed Benzylic sp3 C–H Bond Amination for the Synthesis of 2-Arylquinazolines from 2-Aminobenzaldehydes, 2-Aminobenzophenones and 2-Aminobenzyl Alcohols. Synlett, 2018, 29, 979-985.	1.8	21
216	Synthesis of Ethylene Glycol from Syngas via Oxidative Double Carbonylation of Ethanol to Diethyl Oxalate and Its Subsequent Hydrogenation. ACS Omega, 2018, 3, 11097-11103.	3. 5	21

#	Article	IF	Citations
217	Rapid and Atom Economic Synthesis of Isoquinolines and Isoquinolinones by C–H/N–N Activation Using a Homogeneous Recyclable Ruthenium Catalyst in PEG Media. European Journal of Organic Chemistry, 2019, 2019, 2919-2927.	2.4	21
218	Selectivity in hydroformylation of 1-decene by homogeneous catalysis. Journal of Molecular Catalysis, 1994, 91, L1-L6.	1.2	20
219	Palladium-based supported liquid phase catalysts: influence of preparation variables on the activity and enhancement of the activity on recycling in the Heck reaction. Journal of Molecular Catalysis A, 2002, 180, 277-284.	4.8	20
220	Simultaneous application of two or more supported liquid-phase organometallic catalysts: heterogeneous multifunctional reaction systems. Tetrahedron Letters, 2003, 44, 3505-3507.	1.4	20
221	Ultrasound promoted selective synthesis of 1,1′-binaphthyls catalyzed by Fe impregnated pillared Montmorillonite K10 in presence of TBHP as an oxidant. Ultrasonics Sonochemistry, 2008, 15, 195-202.	8.2	20
222	Palladium \hat{l}^2 -diketonate complex catalyzed synthesis of monosubstituted arylferrocenes. Tetrahedron Letters, 2008, 49, 5252-5254.	1.4	20
223	lonic Liquid: An Efficient and Recyclable Catalyst for the Synthesis of 1-Amidoalkyl-2-naphthols and 1-Carbamatoalkyl-2-naphthols Under Solvent-Free Conditions. Synthetic Communications, 2012, 42, 93-101.	2.1	20
224	Fe@Pd/C: An efficient magnetically separable catalyst for direct reductive amination of carbonyl compounds using environment friendly molecular hydrogen in aqueous reaction medium. Catalysis Today, 2015, 247, 182-189.	4.4	20
225	Asymmetric transfer hydrogenation of seven membered tricyclic ketones: N-substituted dibenzo[b,e]azepine-6,11-dione driven by nonclassical CH/O interactions. Organic Chemistry Frontiers, 2016, 3, 614-619.	4.5	20
226	Carbon dioxide based methodologies for the synthesis of fine chemicals. Organic and Biomolecular Chemistry, 2021, 19, 5725-5757.	2.8	20
227	Synthesis of alkyl iodides/nitriles from carbonyl compounds using novel ruthenium tris(2,2,6,6-tetramethyl-3,5-heptanedionate) as catalyst. Tetrahedron Letters, 2008, 49, 6475-6479.	1.4	19
228	PEG-anchored rhodium polyether diphosphinite complex as an efficient homogeneous and recyclable catalyst for hydroaminomethylation of olefins. Catalysis Communications, 2011, 15, 141-145.	3.3	19
229	Nickelâ€catalyzed threeâ€component coupling reaction of terminal alkynes, dihalomethane and amines to propargylamines. Applied Organometallic Chemistry, 2013, 27, 729-733.	3.5	19
230	Metal-free synthesis of 2-aminobenzoxazoles using hypervalent iodine reagent. Tetrahedron Letters, 2013, 54, 1290-1293.	1.4	19
231	Pd(OAc) ₂ /DABCO as an efficient and phosphine-free catalytic system for the synthesis of single and double Weinreb amides by the aminocarbonylation of aryl iodides. Organic and Biomolecular Chemistry, 2014, 12, 5727.	2.8	19
232	Copper catalyzed oxidative ortho-C–H benzoxylation of 2-phenylpyridines with benzyl alcohols and benzyl amines as benzoxylation sources. Organic and Biomolecular Chemistry, 2014, 12, 9631-9637.	2.8	19
233	Base-catalyzed synthesis of amides and imines via C–C and C bond cleavage. RSC Advances, 2015, 5, 12387-12391.	3.6	19
234	Silica supported palladium phosphine as a robust and recyclable catalyst for semi-hydrogenation of alkynes using syngas. Journal of Molecular Catalysis A, 2016, 414, 78-86.	4.8	19

#	Article	IF	CITATIONS
235	Ultrasoundâ€Assisted Preparation of Copper(I) Oxide Nanocubes: High Catalytic Activity in the Synthesis of Quinazolines. ChemCatChem, 2017, 9, 1292-1297.	3.7	19
236	Ru-Catalyzed asymmetric transfer hydrogenation of substituted dibenzo $[b,f][1,4]$ oxazepines in water. Organic and Biomolecular Chemistry, 2017, 15, 5263-5267.	2.8	19
237	<i>N</i> -Tosylhydrazone directed annulation <i>via</i> Câ€"H/Nâ€"N bond activation in Ru(<scp>ii</scp>)/PEG-400 as homogeneous recyclable catalytic system: a green synthesis of isoquinolines. Organic and Biomolecular Chemistry, 2018, 16, 4864-4873.	2.8	19
238	Graphene oxide as a carbo-catalyst for the synthesis of tri-substituted 1,3,5-triazines using biguanides and alcohols. Catalysis Communications, 2020, 137, 105933.	3.3	19
239	Solvent effects in hydroformylation of 1-octene using HRh(CO)(PPh3)3: Effect of PPh3 addition on the rate of reaction. Journal of Molecular Catalysis, 1993, 78, L37-L40.	1.2	18
240	Synthesis of Sterically Hindered 1,3â€Diketones. Synthetic Communications, 2007, 37, 4111-4115.	2.1	18
241	Ultrasound assisted synthesis of metal-1,3-diketonates. Inorganic Chemistry Communication, 2008, 11, 733-736.	3.9	18
242	Selective hydroformylation of unsaturated esters using a Rh/PPh3-supported ionic liquid-phase catalyst, followed by a novel route to pyrazolin-5-ones. Applied Catalysis A: General, 2008, 347, 142-147.	4.3	18
243	Multicomponent Reactions Catalyzed by Lanthanides. Current Organic Chemistry, 2009, 13, 1805-1819.	1.6	18
244	Polyvinylsulfonic acid as a novel Brønsted acid catalyst for the synthesis of bis(indolyl)methanes. Green Chemistry Letters and Reviews, 2011, 4, 177-183.	4.7	18
245	Dimethylaminoalkyl chalcogenolate palladium(II) complexes as an efficient copper- and phosphine-free catalyst for Sonogashira reaction. Tetrahedron Letters, 2014, 55, 716-719.	1.4	18
246	Transition-metal free synthesis of quinazolinones via tandem cyclization of 2-halobenzoic acids with amidines. RSC Advances, 2015, 5, 57235-57239.	3.6	18
247	Fabrication of Amine and Zirconia on MCMâ€41 as Acid–Base Catalysts for the Fixation of Carbon Dioxide. ChemCatChem, 2017, 9, 4105-4111.	3.7	18
248	Dedicated and Waste Feedstocks for Biorefinery: An Approach to Develop a Sustainable Society. , 2018, , 3-38.		18
249	Recent advances of use of the supercritical carbon dioxide for the biomass pre-treatment and extraction: A mini-review. Journal of the Indian Chemical Society, 2021, 98, 100018.	2.8	18
250	Recent Trends of Ionic Liquids for the Synthesis of 5-hydroxymethylfurfural. Current Organic Chemistry, 2016, 20, 736-751.	1.6	18
251	Effect of solvent on the kinetics of hydroformylation of 1-hexene using HRh(CO)(PPh3)3 catalyst. Journal of Molecular Catalysis, 1992, 77, L13-L17.	1.2	17
252	ZrOCl2·8H2O: An Efficient Catalyst for One-Pot Synthesis of α-Amino Phosphonates Under Solvent-Free Conditions. Synthetic Communications, 2009, 39, 845-859.	2.1	17

#	Article	IF	CITATIONS
253	ZnO nanoparticle by solar energy and their catalytic application for α-amino phosphonates synthesis. Materials Letters, 2012, 86, 50-53.	2.6	17
254	Selective hydroaminomethylation of olefins using simple and efficient Rh–phosphinite complex catalyst. Applied Organometallic Chemistry, 2013, 27, 711-715.	3.5	17
255	Kinetic resolution of secondary alcohols with Burkholderia cepacia lipase immobilized on a biodegradable ternary blend polymer matrix as a highly efficient and heterogeneous recyclable biocatalyst. RSC Advances, 2015, 5, 4592-4598.	3.6	17
256	NiO Nanoparticles: Efficient Catalyst for Four Component Coupling Reaction for Synthesis of Substituted Pyrroles. Catalysis Letters, 2016, 146, 1341-1347.	2.6	17
257	Synthesis of quinazolines from 2-aminobenzylamines with benzylamines and N-substituted benzylamines under transition metal-free conditions. Organic and Biomolecular Chemistry, 2016, 14, 10567-10571.	2.8	17
258	Synthesis of Cu 2 O/Ag nanocomposite and their catalytic application for the one pot synthesis of substituted pyrroles. Molecular Catalysis, 2018, 451, 13-19.	2.0	17
259	Ultrasoundâ€Assisted Synthesis of βâ€Enaminonitriles in the Presence of Base. Synthetic Communications, 2007, 37, 2253-2258.	2.1	16
260	Ruthenium tris(2,2,6,6-tetramethyl-3,5-heptanedionate) catalyzed synthesis of vinyl carbamates using carbon dioxide, amines and alkynes. Catalysis Communications, 2008, 9, 2068-2072.	3.3	16
261	Regioselectivity in Hydroformylation of Aryl Olefins Using Novel Rhodium Polyether Phosphinite Catalysts. Catalysis Letters, 2009, 131, 649-655.	2.6	16
262	Synthesis of 1,3-Disubstituted Symmetrical/Unsymmetrical Ureas via Cs ₂ CO ₃ -Catalyzed Transamination of Ethylene Carbonate and Primary Amines. Synthetic Communications, 2009, 39, 2093-2100.	2.1	16
263	Pd(OAc)2/dppf as an efficient and highly active catalyst for the allylation of amines, alcohols and carboxylic acids with 1-phenyl-1-propyne. Tetrahedron, 2011, 67, 2414-2421.	1.9	16
264	Carbonylative Cyclization of o-Halobenzoic Acids for Synthesis of N-Substituted Phthalimides Using Polymer-Supported Palladium-N-Heterocyclic Carbene as an Efficient, Heterogeneous, and Reusable Catalyst. Synthesis, 2012, 44, 2623-2629.	2.3	16
265	Immobilization of steapsin lipase on macroporous immobead-350 for biodiesel production in solvent free system. Biotechnology and Bioprocess Engineering, 2012, 17, 959-965.	2.6	16
266	Asymmetric Ring Opening of <i>meso</i> â€Epoxides with Aromatic Amines Using (<i>R</i>)â€(+)â€BINOLâ€Sc(OTf) ₃ â€NMM Complex as an Efficient Catalyst. European Journal of Organic Chemistry, 2013, 2013, 6900-6906.	2.4	16
267	Chemoselective Transfer Hydrogenation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Carbonyls Using Palladium Immobilized Ionic Liquid Catalyst. Catalysis Letters, 2014, 144, 1803-1809.	2.6	16
268	Synthesis of Polyester Amide by Carbonylation–Polycondensation Reaction Using Immobilized Palladium Metal Containing Ionic Liquid on SBA-15 as a Phosphine-Free Catalytic System. Catalysis Letters, 2015, 145, 824-833.	2.6	16
269	Highly regio-selective hydroformylation of biomass derived eugenol using aqueous biphasic Rh/TPPTS/CDs as a greener and recyclable catalyst. Molecular Catalysis, 2017, 436, 157-163.	2.0	16
270	Ligandâ€Assisted Pd atalyzed Nâ€Dealkylative Carbonylation of Tertiary Amines with (Hetero)Aryl Halides to Tertiary Amides. Asian Journal of Organic Chemistry, 2018, 7, 160-164.	2.7	16

#	Article	IF	Citations
271	Zirconium-MOF-catalysed selective synthesis of $\hat{l}\pm$ -hydroxyamide via the transfer hydrogenation of $\hat{l}\pm$ -ketoamide. New Journal of Chemistry, 2019, 43, 6160-6167.	2.8	16
272	Ruâ€TsDPEN catalysts and derivatives in asymmetric transfer hydrogenation reactions. Chirality, 2021, 33, 337-378.	2.6	16
273	Ultrasound-Assisted Regioselective Nitration of Phenols Using Dilute Nitric Acid in a Biphasic Medium. Industrial & Diphasic Medium. Industrial & Diphasic Medium.	3.7	15
274	One-pot synthesis of \hat{l}^2 -amido ketones using Br \tilde{A} ,nsted acidic ionic liquid as an efficient and reusable catalyst. Canadian Journal of Chemistry, 2009, 87, 401-405.	1.1	15
275	Ruthenium catalyzed regioselective coupling of terminal alkynes, amine and carbon dioxide leading to anti-Markovnikov adducts. RSC Advances, 2014, 4, 23022-23026.	3.6	15
276	Kinetics of reverse waterâ€gas shift reaction over Pt/Al ₂ O ₃ catalyst. Canadian Journal of Chemical Engineering, 2016, 94, 101-106.	1.7	15
277	Rh/Cu2O nanoparticles: Synthesis, characterization and catalytic application as a heterogeneous catalyst in hydroformylation reaction. Polyhedron, 2016, 120, 162-168.	2.2	15
278	Ligand Assisted Rhodium Catalyzed Selective Semiâ€hydrogenation of Alkynes Using Syngas and Molecular Hydrogen. ChemistrySelect, 2018, 3, 713-718.	1.5	15
279	Pd/PTABS: An Efficient Catalytic System for the Aminocarbonylation of a Sugar-Protected Nucleoside. Synthesis, 2019, 51, 4239-4248.	2.3	15
280	Comparative account of catalytic activity of Ru- and Ni-based nanocomposites towards reductive amination of biomass derived molecules. Molecular Catalysis, 2021, 510, 111667.	2.0	15
281	An efficient oxidative coupling of naphthols catalyzed by Fe impregnated pillared montmorillonite K10. Catalysis Letters, 2006, 112, 45-50.	2.6	14
282	Highly efficient chemoselective catalytic hydrogenation of diaryl substituted $\hat{l}\pm,\hat{l}^2$ -unsaturated nitriles/carbonyls using homogeneous Pd(OAc)2/PPh3 catalyst. Catalysis Communications, 2007, 8, 2064-2068.	3.3	14
283	Amidation of Aryl Halides with Isocyanides Using a Polymer-Supported Palladium–N-Heterocyclic Carbene Complex as an Efficient, Phosphine-Free and Heterogeneous Recyclable Catalyst. Synthesis, 2014, 46, 1236-1242.	2.3	14
284	Regioselective hydroformylation of vinyl esters catalyzed by Rh(acac)(CO)2 with simple and efficient diphosphinite ligands. Catalysis Communications, 2014, 46, 109-112.	3.3	14
285	Copper-Catalyzed Synthesis of Weinreb Amides by Oxidative Amidation of Alcohols. Synthesis, 2015, 47, 526-532.	2.3	14
286	Immobilized ruthenium metal-containing ionic liquid-catalyzed dehydrogenation of dimethylamine borane complex for the reduction of olefins and nitroarenes. RSC Advances, 2016, 6, 52347-52352.	3.6	14
287	Oxidative Functionalization of Styrenes: Synthesis of 1,3,5â€triazines from Styrenes ⟨i⟩via⟨ i⟩ Tandem Cyclization with Amidines. ChemistrySelect, 2016, 1, 343-346.	1.5	14
288	An Improved Strategy for the Synthesis of Ethylene Glycol by Oxamateâ€Mediated Catalytic Hydrogenation. ChemSusChem, 2017, 10, 1356-1359.	6.8	14

#	Article	IF	Citations
289	Catalytic asymmetric synthesis of \hat{l}^2 -triazolyl amino alcohols by asymmetric transfer hydrogenation of \hat{l}_2 -triazolyl amino alkanones. Tetrahedron: Asymmetry, 2017, 28, 974-982.	1.8	14
290	Electrodimerization of <i>N</i> â€Alkoxyamides for Zinc(II) Catalyzed Phenolic Ester Synthesis under Mild Reaction Conditions. Advanced Synthesis and Catalysis, 2018, 360, 2511-2521.	4.3	14
291	Ruthenium-Catalyzed Annulation of N-Cbz Hydrazones via C–H/N–N Bond Activation for the Rapid Synthesis of Isoquinolines. Synthesis, 2019, 51, 2506-2514.	2.3	14
292	Pd-Catalyzed Oxidative Aminocarbonylation of Arylboronic Acids with Unreactive Tertiary Amines via C–N Bond Activation. Journal of Organic Chemistry, 2021, 86, 14028-14035.	3.2	14
293	Copper-Catalyzed, Palladium-Free Carbonylative Sonogashira Coupling Reaction of Aliphatic and Aromatic Alkynes with Iodoaryls. Synlett, 2008, 2008, 886-888.	1.8	13
294	Allylic Amination of Internal Alkynes with Aromatic and Aliphatic Amines Using Polymerâ€Supported Triphenylphosphaneâ€"Palladium Complex as a Heterogeneous and Recyclable Catalyst. European Journal of Organic Chemistry, 2010, 2010, 5071-5076.	2.4	13
295	Extraction and electrochemical behavior of fission palladium in room-temperature ionic liquid. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 1047-1052.	1.5	13
296	Ionic Liquid Immobilized on Grapheneâ€Oxideâ€Containing Palladium Metal Ions as an Efficient Catalyst for the Alkoxy, Amino, and Phenoxy Carbonylation Reactions. ChemNanoMat, 2018, 4, 575-582.	2.8	13
297	Synthesis of quinolines via acceptorless dehydrogenative tandem cyclization of 2-amionbenzyl alcohol with alcohols using magnetic CuNiFeO nanocatalyst. Molecular Catalysis, 2019, 478, 110565.	2.0	13
298	Palladium/1,2-bis(diphenylphosphino) ethane catalysed amination of aryl halides with aliphatic/aromatic amines. Journal of Molecular Catalysis A, 2006, 259, 46-50.	4.8	12
299	Polyvinylsulfonic acid as a novel BrÃ,nsted acid catalyst for Michael addition of indoles to $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones. Catalysis Communications, 2009, 10, 1569-1573.	3.3	12
300	Pd(OAc)2-Catalyzed Carbonylative Coupling of Aryl Iodide with Ortho-Haloamines in Water. Synthetic Communications, 2012, 42, 176-185.	2.1	12
301	Solar Energy Assisted Starch-Stabilized Palladium Nanoparticles and Their Application in Câ€"C Coupling Reactions. Journal of Nanoscience and Nanotechnology, 2013, 13, 5061-5068.	0.9	12
302	Base-Mediated Synthesis of Imines and Amines from N-Phenylureas and Alcohols. Synlett, 2014, 25, 1611-1615.	1.8	12
303	Synthesis of a chiral fluorescence active probe and its application as an efficient catalyst in the asymmetric Friedel–Crafts alkylation of indole derivatives with nitroalkenes. Catalysis Science and Technology, 2015, 5, 1514-1520.	4.1	12
304	Direct α-Alkylation of Acetophenones with Benzhydrols as Well as 1-Phenylethanols Using Amberlyst-15/Ionic Liquid as an Efficient Catalytic System. ACS Sustainable Chemistry and Engineering, 2016, 4, 445-450.	6.7	12
305	Chemoselective Cleavage of C(CO)â^C Bond: Molecular Iodineâ€Catalyzed Synthesis of Quinazolines through sp ³ Câ^H Bond Functionalization of Aryl Methyl Ketones. Asian Journal of Organic Chemistry, 2017, 6, 831-836.	2.7	12
306	Asymmetric transfer hydrogenation of acetophenone derivatives usingÂ2-benzyl-tethered ruthenium (II)/TsDPEN complexes bearing Î-6-(p-OR) (RÂ= H, iPr, Bn, Ph) ligands. Journal of Organometallic Chemistry, 2018, 875, 72-79.	1.8	12

#	Article	IF	CITATIONS
307	Hydrogenolysis of Biomassâ€Derived 5â€Hydroxymethylfurfural to Produce 2,5â€Dimethylfuran Over Ruâ€ZrO ₂ â€MCMâ€41 Catalyst. ChemistrySelect, 2019, 4, 6080-6089.	1.5	12
308	UiO-66 as an efficient catalyst for N-formylation of amines with CO2 and dimethylamine borane as a reducing agent. Inorganica Chimica Acta, 2020, 501, 119274.	2.4	12
309	Microwave ECR Plasma Assisted MOCVD of Y ₂ O ₃ Thin Films Using Y(tod) ₃ Precursor and Their Characterization. Plasma Processes and Polymers, 2011, 8, 740-749.	3.0	11
310	Selective hydroformylation of various olefins using diphosphinite ligands. Applied Organometallic Chemistry, 2013, 27, 313-317.	3.5	11
311	Copper bis(2,2,6,6-Tetramethyl-3,5-heptanedionate)–Catalyzed Coupling of Sodium Azide with Aryl lodides/Boronic Acids to Aryl Azides or Aryl Amines. Synthetic Communications, 2014, 44, 399-407.	2.1	11
312	Combined docking and molecular dynamics study of lipase catalyzed kinetic resolution of 1-phenylethanol in organic solvents. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S119-S127.	1.8	11
313	Kinetic resolution of 1,2-diols using immobilized Burkholderia cepacia lipase: A combined experimental and molecular dynamics investigation. Journal of Biotechnology, 2017, 262, 1-10.	3.8	11
314	Cuprous Oxide Nanoparticle Supported on Iron Oxide (Cu ₂ 0-Fe ₃ Ocsub>4): Magnetically Separable and Reusable Nanocatalyst for the Synthesis of Quinazolines. ChemistrySelect, 2017, 2, 10055-10060.	1.5	11
315	iEDDA Reaction of the Molecular Iodine-Catalyzed Synthesis of 1,3,5-Triazines via Functionalization of the sp3 Cae^{H} Bond of Acetophenones with Amidines: An Experimental Investigation and DFT Study. Journal of Organic Chemistry, 2017, 82, 13239-13249.	3.2	11
316	Assessing ionicity of protic ionic liquids by far IR spectroscopy. Journal of Molecular Liquids, 2018, 252, 180-183.	4.9	11
317	Semi-hydrogenation of alkynes using Ru/TPPTS as a biphasic recyclable catalyst in ethylene glycol-toluene solvent system. Molecular Catalysis, 2018, 460, 1-6.	2.0	11
318	Dppf‣igated Palladium Complex as an Efficient Catalyst for the Synthesis of Biaryl Ketones Using Co ₂ (CO) ₈ as a C1 Source with High TON and TOF. ChemistrySelect, 2019, 4, 8269-8276.	1.5	11
319	Room-Temperature Asymmetric Transfer Hydrogenation of Biomass-Derived Levulinic Acid to Optically Pure Î ³ -Valerolactone Using a Ruthenium Catalyst. ACS Omega, 2019, 4, 19491-19498.	3.5	11
320	Xantphosâ€ligated palladium dithiolates: An unprecedented and convenient catalyst for the carbonylative Suzukiâ€"Miyaura crossâ€coupling reaction with high turnover number and turnover frequency. Applied Organometallic Chemistry, 2020, 34, e5255.	3.5	11
321	Synthesis of propyl benzoate by solvent-free immobilized lipase-catalyzed transesterification: Optimization and kinetic modeling. Bioprocess and Biosystems Engineering, 2021, 44, 369-378.	3.4	11
322	Recent update on use of ionic liquids for enzyme immobilization, activation, and catalysis: A partnership for sustainability. Current Opinion in Green and Sustainable Chemistry, 2022, 36, 100621.	5.9	11
323	Solar energy assisted synthesis of palladium nanoplates and its application in 2-phenoxy-1,1 \hat{a} eighenyls and N,N-dimethyl-[1,1 \hat{a} eighenyl] derivatives synthesis. Journal of Molecular Catalysis A, 2013, 379, 30-37.	4.8	10
324	Rhodium-catalyzed synthesis of quinolines and imines under mild conditions. RSC Advances, 2015, 5, 51570-51575.	3.6	10

#	Article	IF	Citations
325	Immobilized lipase catalyzed synthesis of <i>n< i>a€amyl acetate: parameter optimization, heterogeneous kinetics, continuous flow operation and reactor modeling. Journal of Chemical Technology and Biotechnology, 2018, 93, 2906-2916.</i>	3.2	10
326	Ru–Prolinamide atalyzed Asymmetric Transfer Hydrogenation of Racemic βâ€Heterosubstituted Cycloalkanones Driven by Dynamic Kinetic Resolution. Asian Journal of Organic Chemistry, 2018, 7, 346-349.	2.7	10
327	Rhodium catalyzed selective hydroaminomethylation of biorenewable eugenol under aqueous biphasic condition. Molecular Catalysis, 2018, 452, 108-116.	2.0	10
328	Sulphated Al-MCM-41: A simple, efficient and recyclable catalyst for synthesis of substituted aryl ketones/olefins via alcohols addition to alkynes and coupling with styrenes. Molecular Catalysis, 2018, 452, 46-53.	2.0	10
329	Xantphosâ€coordinated palladium dithiolates: Highly efficient catalyst for decarboxylative Sonogashira reaction into corresponding alkynes. Applied Organometallic Chemistry, 2021, 35, e6328.	3.5	10
330	Synthesis ofN,N′-Disubstituted Urea from Ethylene Carbonate and Amine Using CaO. Chemistry Letters, 2004, 33, 742-743.	1.3	9
331	Ultrasound assisted regioselective sulfonation of aromatic compounds with sulfuric acid. Ultrasonics Sonochemistry, 2009, 16, 308-311.	8.2	9
332	Formylation and acetylation of alcohols using Amberlyst-15 (sup) \hat{A}^{\otimes} (sup) as a recyclable heterogeneous catalyst. Green Chemistry Letters and Reviews, 2012, 5, 27-32.	4.7	9
333	Synthesis of cobalt oxide nanowires using a glycerol thermal route. Materials Letters, 2013, 96, 60-62.	2.6	9
334	tert-Butyl Peroxybenzoate Mediated Selective and Mild N-Benzoylation of Ammonia/Amines under Catalyst- and Solvent-Free Conditions. Synlett, 2015, 26, 1862-1866.	1.8	9
335	Synthesis of polyamides using palladium-on-carbon (Pd/C) as a heterogeneous, reusable and ligand-free catalytic system. RSC Advances, 2015, 5, 93773-93778.	3.6	9
336	Effect of solvent ratio and counter ions on the morphology of copper nanoparticles and their catalytic application in \hat{l}^2 -enaminone synthesis. RSC Advances, 2016, 6, 101800-101807.	3.6	9
337	Oxime palladacycle in PEG as a highly efficient and recyclable catalytic system for phenoxycarbonylation of aryl iodides with phenols. Applied Organometallic Chemistry, 2019, 33, e4741.	3.5	9
338	Pd/C-catalyzed synthesis of oxamates by oxidative cross double carbonylation of alcohols and tertiary amines through C–N bond cleavage. New Journal of Chemistry, 2019, 43, 18072-18078.	2.8	9
339	Supramolecular Pd(II) complex of DPPF and dithiolate: An efficient catalyst for amino and phenoxycarbonylation using Co2(CO)8 as sustainable C1 source. Molecular Catalysis, 2020, 482, 110672.	2.0	9
340	Highly efficient one pot synthesis of benzimidazoles from 2-nitroaniline and PhSiH3 as reducing agent catalyzed by Pd/C as a heterogeneous catalyst. Tetrahedron Letters, 2021, 68, 152940.	1.4	9
341	Nitridated Fibrous Silica/Tetrabutylammonium Iodide (Nâ€DFNS/TBAI): Robust and Efficient Catalytic System for Chemical Fixation of Carbon Dioxide to Cyclic Carbonates. ChemCatChem, 2021, 13, 2907-2914.	3.7	9
342	Kinetic Analysis of Hydrogenation of Cinnamaldehyde with a Ruthenium Complex Catalyst in Several Solvents Journal of Chemical Engineering of Japan, 2003, 36, 155-160.	0.6	9

#	Article	IF	CITATIONS
343	Heck reactions in supercritical carbon dioxide using organometallic complex catalysts. High Pressure Research, 2001, 20, 131-142.	1.2	8
344	Pd(OAc)2-Catalyzed Aminocarbonylation of Aryl lodides with Aromatic or Aliphatic Amines in Water. Synthesis, 2008, 2008, 2347-2352.	2.3	8
345	Allylation of 1-phenyl-1-propyne with N- and O-pronucleophiles using polymer supported triphenylphosphine palladium complex as a heterogeneous and recyclable catalyst. Tetrahedron Letters, 2011, 52, 5676-5679.	1.4	8
346	A Simple, Efficient, and Recyclable Phosphine-Free Catalytic System for Carbonylative Suzuki Coupling Reaction of Aryl and Heteroaryl lodides. Synthesis, 2011, 2011, 243-250.	2.3	8
347	Pd(OAc)2/DPPF-catalysed microwave-assisted cyanide-free synthesis of aryl nitriles. Journal of Chemical Sciences, 2014, 126, 319-324.	1.5	8
348	An efficient ligand free chemoselective transfer hydrogenation of olefinic bonds by palladium nanoparticles in an aqueous reaction medium. RSC Advances, 2014, 4, 32834-32839.	3.6	8
349	Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 15783-15790.	2.8	8
350	Epoxidised soybean oil–Cu/Cu ₂ O bio-nanocomposite material: synthesis and characterization with antibacterial activity. RSC Advances, 2016, 6, 38906-38912.	3.6	8
351	Brønsted acidity of protic ionic liquids: a modern ab initio valence bond theory perspective. Physical Chemistry Chemical Physics, 2016, 18, 26020-26025.	2.8	8
352	A Simple, Additive Free Approach for Synthesis of Cu/Cu2O Nanoparticles: Effect of Precursors in Morphology Selectivity. Journal of Cluster Science, 2017, 28, 1215-1224.	3.3	8
353	Highly Enantioselective One-Pot Synthesis of Chiral β-Heterosubstituted Alcohols via Ruthenium–Prolinamide-Catalyzed Asymmetric Transfer Hydrogenation. ACS Omega, 2018, 3, 12737-12745.	3.5	8
354	Coâ€Al Hydrotalcites: Highly Active Catalysts for the Oneâ€Pot Conversion of Fructose to 2,5â€Diformylfuran. ChemistrySelect, 2018, 3, 11388-11397.	1.5	8
355	The one-step transformation of fructose to 2,5-diformylfuran over Ru metal supported on montmorillonite. New Journal of Chemistry, 2020, 44, 13659-13668.	2.8	8
356	Investigation of effect of ultrasound on immobilized C. rugosa lipase: Synthesis of biomass based furfuryl derivative and green metrics evaluation study. Enzyme and Microbial Technology, 2021, 144, 109738.	3.2	8
357	Zinc Mediated Selective Acylation of Ferrocene under Solvent-Free Conditions. Journal of Chemical Research, 2007, 2007, 426-428.	1.3	7
358	Approach for Catalyst-Product Separation Using Recyclable Liquid Phase Catalysis. Industrial & Engineering Chemistry Research, 2010, 49, 8360-8364.	3.7	7
359	Hydroarylation of arenes with styrenes using Montmorillonite K-10 as an efficient, selective, and recyclable catalyst. Green Chemistry Letters and Reviews, 2012, 5, 621-632.	4.7	7
360	Amides and Ethers as Chemoselective Surrogates for Copper(II)-Catalyzed ortho Benzoyloxylation of 2-Phenylpyridines. Synlett, 2015, 26, 2161-2160.	1.8	7

#	Article	IF	CITATIONS
361	Oneâ€"step sonochemical irradiation dependent shape controlled crystal growth study of gold nano/microplates with high catalytic activity in degradation of dyes. ChemistrySelect, 2016, 1, 504-512.	1.5	7
362	Amberlyst-15/[Bmim][PF6] Catalyzed Synthesis of C3-Symmetric Triarylbenzenes via Cyclotrimerization of Alkynes. ACS Sustainable Chemistry and Engineering, 2016, 4, 4232-4236.	6.7	7
363	Role of palladium precursors in morphology selective synthesis of palladium nanostructures. Powder Technology, 2016, 291, 154-158.	4.2	7
364	Nanoceriaâ€Catalyzed Selective Synthesis of αâ€Hydroxy Amides through the Reduction of an Unusual Class of αâ€Keto Amides. Asian Journal of Organic Chemistry, 2018, 7, 922-931.	2.7	7
365	Cp*Co(III) catalyzed annulation of <i>N</i> -Cbz hydrazones for the redox-neutral synthesis of isoquinolines via Câ€"H/Nâ€"N bond activation. Synthetic Communications, 2019, 49, 3121-3130.	2.1	7
366	Electronic And Steric Effect Favored Selective Synthesis Of Asymmetric (â€) N â€Aryl Mandelamides. ChemistrySelect, 2019, 4, 14032-14035.	1.5	7
367	Kinetics in biphasic catalysis using ethylene glycol as a co-solvent in the hydroformylation of 1-hexene. Studies in Surface Science and Catalysis, 1998, , 529-539.	1.5	6
368	Selective Hydrogenation of Phenylacetylene with Graphite Intercalated Platinum Nanosheets Journal of the Japan Petroleum Institute, 2002, 45, 420-421.	0.6	6
369	Synthesis of Propargylic Alcohols by base promoted Alkynylation of Ketones with Ethynylbenzene using Ionic Liquid [(bmim) PF6]. Journal of Chemical Research, 2007, 2007, 370-372.	1.3	6
370	Synthesis of Benzimidazoles and Benzoxazoles Using Palladium Bis(2,2,6,6-tetramethyl-3,5-heptanedionate) as a Novel Catalyst. Synthetic Communications, 2010, 40, 1743-1749.	2.1	6
371	Direct C-2 Acylation of Thiazoles with Aldehydes via Metal- and Solvent-Free C–H Activation in the Presence of tert-Butyl Hydroperoxide. Synlett, 2013, 25, 110-114.	1.8	6
372	Size controlled synthesis of gold nanostructures using ketones and their catalytic activity towards reduction of p-nitrophenol. Polyhedron, 2016, 120, 96-102.	2.2	6
373	Synthesis and evaluation of n-octenyl succinylated guar gum as an anti-staling agent in bread. LWT - Food Science and Technology, 2018, 93, 368-375.	5. 2	6
374	Rhodium/Phosphine catalysed selective hydroformylation of biorenewable olefins. Applied Organometallic Chemistry, 2018, 32, e4478.	3.5	6
375	CuNiFe a Magnetic Nanoâ€Catalyst: an Efficient Catalyst for the Selective Synthesis of Benzoxazoles. ChemistrySelect, 2018, 3, 7963-7969.	1.5	6
376	Direct Synthesis of Amides from Oxidative Coupling of Benzyl Alcohols and N-substituted Formamides Using a Co–Al Based Heterogeneous Catalyst. Catalysis Letters, 2018, 148, 3102-3111.	2.6	6
377	[TBDH][HFIP] ionic liquid catalyzed synthesis of quinazoline-2,4(1H,3H)-diones in the presence of ambient temperature and pressure. Journal of Molecular Liquids, 2022, 345, 117008.	4.9	6
378	Solar Light Assisted Synthesis of CeO2 Nanoparticles for Transesterification of Ethylene Carbonate with Methanol to Dimethyl Carbonate. Catalysis Letters, 2022, 152, 3284-3293.	2.6	6

#	Article	IF	CITATIONS
379	Polymer Supported Triphenylphosphine-Palladium Acetate Complex PS-TPP-Pd(OAc)2 as a Heterogeneous and Reusable Catalyst for Indirect Reductive Amination of Aldehydes. Catalysts, 2014, 4, 289-298.	3.5	5
380	Synthesis of Substituted Aryl Ketones by Addition of Alcohols to Alkynes Using Amberlyst-15/Ionic Liquid as a Recyclable Catalytic System. Synlett, 2015, 26, 759-764.	1.8	5
381	Water-assisted electrochemical fabrication of Cu/Cu2O nanoparticles in protic ionic liquid and their catalytic activity in the synthesis of quinazolinones. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 905-918.	1.7	5
382	Ru–g-C ₃ N ₄ as a highly active heterogeneous catalyst for transfer hydrogenation of α-keto amide into β-aminol or α-hydroxyl amide. New Journal of Chemistry, 2020, 44, 10578-10585.	2.8	5
383	Electrochemical Fabrication of Copper and Tin Micro rystals from a Protic Ionic Liquid Medium. ChemistrySelect, 2020, 5, 3694-3699.	1.5	5
384	Environmentally Benign Synthesis of 4-Thiazolidinone Derivatives Using a Co/Al Hydrotalcite as Heterogeneous Catalyst. Catalysis Letters, 2021, 151, 1776-1787.	2.6	5
385	N-Tosylhydrazone as an oxidizing directing group for the redox-neutral access to isoquinolines via Cpâ^—Co(III)-Catalyzed C–H/N–N activation. Journal of the Indian Chemical Society, 2021, 98, 100001.	2.8	5
386	Electrochemical deposition of nanocrystalline aluminum from a protic ionic liquid on mild steel. Journal of Molecular Liquids, 2021, 326, 115275.	4.9	5
387	Reductive Amination of Biomass-Based Levulinic Acid into Pyrrolidone by Protic Ionic Liquid via Dehydrogenation of Dimethyl Amine Borane. Waste and Biomass Valorization, 2022, 13, 443-451.	3.4	5
388	Synthesis of 2â€Substituted Indoles by Pdâ€Catalyzed Reductive Cyclization of 1â€Haloâ€2â€nitrobenzene with Alkynes. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
389	Facile synthesis of isoindoline-1,3-diones by palladium-catalyzed carbonylative cyclization of o-bromobenzoic acid and primary amines. Frontiers of Chemical Science and Engineering, 2013, 7, 226-232.	4.4	4
390	A magnetic adsorbent for the mutual separation of Am(III) and Eu(III) from dilute nitric acid medium. Colloids and Interface Science Communications, 2016, 12, 13-16.	4.1	4
391	Palladium(II) Complex of 4-Pyridylselenolate Ligand: An Efficient Catalyst for Aminocarbonylation of Aryl and Hetero Aryl Iodides with Primary Amines. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2016, 86, 581-587.	1.2	4
392	Carbonylation of Anthranilic Acid with Aryl and Heteroaryl Bromides to Synthesize Benzoxazinone Derivatives. Asian Journal of Organic Chemistry, 2016, 5, 1120-1123.	2.7	4
393	Advances in Catalysis for Sustainable Development Special Issue. ACS Sustainable Chemistry and Engineering, 2017, 5, 3597-3597.	6.7	4
394	Palladiumâ€Catalyzed Aerobic Oxidative Carbonylation of Câ€"H Bonds in Phenols for the Synthesis of <i>p</i> h; a€Hydroxybenzoates. European Journal of Organic Chemistry, 2018, 2018, 2877-2881.	2.4	4
395	Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling. Journal of Biotechnology, 2018, 283, 70-80.	3.8	4
396	L-Serine@ZnO as an efficient and reusable catalyst for synthesis of cyclic carbonates and formamides in presence of CO2 atmosphere. Molecular Catalysis, 2020, 492, 111000.	2.0	4

#	Article	IF	CITATIONS
397	One-pot synthesis of symmetrical and asymmetrical diphenylamines from guanidines with aryl iodide using Cu/Cu2O nanocatalyst. Molecular Catalysis, 2020, 492, 110998.	2.0	4
398	Tetrabutylammonium Iodide (TBAI) Catalyzed Electrochemical C–H Bond Activation of 2-Arylated N-Methoxyamides for the Synthesis of Phenanthridinones. Synlett, 2021, 32, 999-1003.	1.8	4
399	Insights into cascade and sequential one-pot pathways for reductive amination of aldehydes paired with bio-derived levulinic acid to $\langle i \rangle N \langle i \rangle$ -substituted pyrrolidones using molecular hydrogen. Reaction Chemistry and Engineering, 2022, 7, 1005-1013.	3.7	4
400	Tunable Pd/C-catalyzed oxidative alkoxycarbonylation/aminocarbonylation of aryl hydrazines with alcohols/inert tertiary amines through C–N bond activation. New Journal of Chemistry, 2022, 46, 14421-14426.	2.8	4
401	A Phosphine-Free Approach to Primary Amides by Palladium-Catalyzed Aminocarbonylation of Aryl and Heteroaryl Iodides Using Methoxylamine Hydrochloride as an Ammonia Equivalent. Synlett, 2013, 25, 85-88.	1.8	3
402	Studies on the Radiochemical Degradation of Tetraethylhexyl Diglycolamide and Ethylhexylphosphoric Acid in <i>n</i> -Dodecane Solution. Separation Science and Technology, 2015, 50, 646-653.	2.5	3
403	Novel Diglycolamic Acid Functionalized Iron Oxide Particles for the Mutual Separation of Eu(III) and Am(III). Solvent Extraction and Ion Exchange, 2015, 33, 656-670.	2.0	3
404	Selection of Reaction Media., 2016,, 221-262.		2
405	In situ Generation and Utilization of CO: An Efficient Route towards N-Substituted Saccharin via Carbonylative Cyclization of 2-lodosulfonamides. Synlett, 2017, 28, 2000-2003.	1.8	2
406	Experimental and Theoretical Investigations of Consequence of Ionic Liquid Anion on Copper(I) Catalyzed Reaction of Aryl Iodide and Thiols. Industrial & Engineering Chemistry Research, 2013, 52, 4747-4757.	3.7	1
407	Sonochemistry: A Greener Protocol for Nanoparticles Synthesis. , 2015, , 1-20.		1
408	Synthesis of polyesteramides by carbonylation–polycondensation reaction by using Pd/C as an efficient, heterogeneous and recyclable catalyst. Polyhedron, 2016, 120, 112-117.	2.2	1
409	Rh-catalyzed selective synthesis of 1,5-dimethylhexahydro-1H-inden-4(2H)-one via hydroformylation of (R)-carvone. Catalysis Communications, 2018, 112, 21-25.	3.3	1
410	Nanoparticular or Colloidal Pathways for Palladacycles-Mediated Catalytic Processes. , 2019, , 327-342.		1
411	Hydroformylation of allyl acetate using rhodium polyether diphosphinite catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2009, 99, 143.	1.7	O
412	Carbonylative Suzuki-Miyaura Coupling Using PS-Pd-NHC. Synfacts, 2011, 2011, 0458-0458.	0.0	0
413	Magnetic Assisted Separation of Trivalent f- Elements from Dilute Nitric Acid Medium. Separation Science and Technology, 2015, , 150527095459001.	2.5	0
414	Palladium-Catalyzed Carbonylative and Carboxylative C H Functionalization Reactions., 2017,, 233-274.		0

#	Article	IF	CITATIONS
415	Catalysis for sustainable development. Clean Technologies and Environmental Policy, 2018, 20, 681-682.	4.1	0
416	Insights into Sustainable C–H Bond Activation. , 2021, , 253-318.		0
417	Ru-Tethered ($\langle i\rangle R,R\langle i\rangle$)-TsDPEN with DMAB as an efficient catalytic system for high enantioselective one-pot synthesis of chiral \hat{l}^2 -aminol $\langle i\rangle via\langle i\rangle$ asymmetric transfer hydrogenation. New Journal of Chemistry, 2021, 45, 5357-5362.	2.8	O
418	Metal Ion-Containing Ionic Liquid Catalysts on Solid Supports for Organic Reactions., 2019, , 1-21.		0
419	Kinetic and docking study of synthesis of glyceryl monostearate by immobilized lipase in non-aqueous media. Biocatalysis and Biotransformation, 0, , 1-10.	2.0	0