Davide De Pietri Tonelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2173313/publications.pdf

Version: 2024-02-01

35 1,974 22 papers citations h-index

h-index g-index

39 3696
times ranked citing authors

33

39 all docs

39 docs citations

#	Article	IF	CITATIONS
1	Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Frontiers in Cellular Neuroscience, 2021, 15, 781434.	3.7	7
2	Circadian glucocorticoid oscillations preserve a population of adult hippocampal neural stem cells in the aging brain. Molecular Psychiatry, 2020, 25, 1382-1405.	7.9	58
3	A Xenotransplant Model of Human Brain Tumors in Wild-Type Mice. IScience, 2020, 23, 100813.	4.1	16
4	Deletion of astrocytic BMAL1 results in metabolic imbalance and shorter lifespan in mice. Glia, 2020, 68, 1131-1147.	4.9	41
5	LC–MS/MS analysis of twelve neurotransmitters and amino acids in mouse cerebrospinal fluid. Journal of Neuroscience Methods, 2020, 341, 108760.	2.5	11
6	MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis. Stem Cell Reports, 2019, 12, 1298-1312.	4.8	37
7	Astrocytes and Circadian Rhythms: An Emerging Astrocyte–Neuron Synergy in the Timekeeping System. Methods in Molecular Biology, 2019, 1938, 131-154.	0.9	12
8	A new SWATH ion library for mouse adult hippocampal neural stem cells. Data in Brief, 2018, 18, 1-8.	1.0	14
9	DGCR8 Promotes Neural Progenitor Expansion and Represses Neurogenesis in the Mouse Embryonic Neocortex. Frontiers in Neuroscience, 2018, 12, 281.	2.8	7
10	MicroRNAâ€independent functions of DGCR8 are essential for neocortical development and TBR1 expression. EMBO Reports, 2017, 18, 603-618.	4.5	47
11	Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nature Communications, 2017, 8, 14336.	12.8	162
12	Synergic Functions of miRNAs Determine Neuronal Fate of Adult Neural Stem Cells. Stem Cell Reports, 2017, 8, 1046-1061.	4.8	49
13	Developmental excitatory-to-inhibitory GABA-polarity switch is disrupted in 22q11.2 deletion syndrome: a potential target for clinical therapeutics. Scientific Reports, 2017, 7, 15752.	3.3	51
14	Lamin B1 levels modulate differentiation into neurons during embryonic corticogenesis. Scientific Reports, 2017, 7, 4897.	3.3	33
15	Methodological Challenges in Functional Investigation and Therapeutic Use of microRNAs. , 2017, , 61-79.		0
16	4D (x-y-z-t) imaging of thick biological samples by means of Two-Photon inverted Selective Plane Illumination Microscopy (2PE-iSPIM). Scientific Reports, 2016, 6, 23923.	3.3	22
17	COMT Genetic Reduction Produces Sexually Divergent Effects on Cortical Anatomy and Working Memory in Mice and Humans. Cerebral Cortex, 2015, 25, 2529-2541.	2.9	57
18	Convergent microRNA actions coordinate neocortical development. Cellular and Molecular Life Sciences, 2014, 71, 2975-2995.	5.4	80

#	Article	lF	CITATIONS
19	Detection and Monitoring of MicroRNA Expression in Developing Mouse Brain and Fixed Brain Cryosections. Methods in Molecular Biology, 2014, 1092, 31-42.	0.9	16
20	Nano-volume drop patterning for rapid on-chip neuronal connect-ability assays. Lab on A Chip, 2013, 13, 4419.	6.0	22
21	Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nature Neuroscience, 2013, 16, 227-234.	14.8	203
22	Sox2 is required for embryonic development of the ventral telencephalon through the activation of the ventral determinants Nkx2.1 and Shh. Development (Cambridge), 2013, 140, 1250-1261.	2.5	48
23	MiR-30e and miR-181d control Radial Glia cell proliferation via HtrA1 modulation. Cell Death and Disease, 2012, 3, e360-e360.	6.3	44
24	Convergent repression of Foxp2 3′UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development (Cambridge), 2012, 139, 3332-3342.	2.5	125
25	A study of neural-related microRNAs in the developing amphioxus. EvoDevo, 2011, 2, 15.	3.2	33
26	TBC1D24, an ARF6-Interacting Protein, Is Mutated in Familial Infantile Myoclonic Epilepsy. American Journal of Human Genetics, 2010, 87, 365-370.	6.2	134
27	Oppositional effects of serotonin receptors 5-HT1a, 2, and 2c in the regulation of adult hippocampal neurogenesis. Frontiers in Molecular Neuroscience, 2010, 3, .	2.9	65
28	miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development (Cambridge), 2008, 135, 3911-3921.	2.5	309
29	Single-cell detection of microRNAs in developing vertebrate embryos after acute administration of a dual-fluorescence reporter/sensor plasmid. BioTechniques, 2006, 41, 727-732.	1.8	71
30	Translational regulation of BACE-1 expression in neuronal and non-neuronal cells. Nucleic Acids Research, 2004, 32, 1808-1817.	14.5	79
31	P4-169 Translational control of BACE-1 expression. Neurobiology of Aging, 2004, 25, S523.	3.1	0
32	Translational control of Scamper expression via a cell-specific internal ribosome entry site. Nucleic Acids Research, 2003, 31, 2508-2513.	14.5	11
33	Re-evaluation of primary structure, topology, and localization of Scamper, a putative intracellular Ca2+ channel activated by sphingosylphosphocholine. Biochemical Journal, 2002, 362, 183-189.	3.7	30
34	Splice variants of the \hat{I}^2 -site APP-cleaving enzyme BACE1 in human brain and pancreas. Biochemical and Biophysical Research Communications, 2002, 293, 30-37.	2.1	58
35	Re-evaluation of primary structure, topology, and localization of Scamper, a putative intracellular Ca2+ channel activated by sphingosylphosphocholine. Biochemical Journal, 2002, 362, 183.	3.7	18