Stephen M Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2173168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peptide-Affinity Isolation of Extracellular Vesicles and Cell-Free DNA From Human Plasma. Methods in Molecular Biology, 2022, , 341-352.	0.9	1
2	A multiparametric extraction method for Vn96-isolated plasma extracellular vesicles and cell-free DNA that enables multi-omic profiling. Scientific Reports, 2021, 11, 8085.	3.3	8
3	The polysaccharide chitosan facilitates the isolation of small extracellular vesicles from multiple biofluids. Journal of Extracellular Vesicles, 2021, 10, e12138.	12.2	14
4	Haploinsufficient tumor suppressor PRP4K is negatively regulated during epithelialâ€ŧoâ€mesenchymal transition. FASEB Journal, 2021, 35, e22001.	0.5	3
5	Characterization of miRNAs in Extracellular Vesicles Released From Atlantic Salmon Monocyte-Like and Macrophage-Like Cells. Frontiers in Immunology, 2020, 11, 587931.	4.8	15
6	Peptide-Affinity Precipitation of Extracellular Vesicles and Cell-Free DNA Improves Sequencing Performance for the Detection of Pathogenic Mutations in Lung Cancer Patient Plasma. International Journal of Molecular Sciences, 2020, 21, 9083.	4.1	16
7	Cellular stress orchestrates the localization of hnRNP H to stress granules. Experimental Cell Research, 2020, 394, 112111.	2.6	9
8	Regulation of Epithelial-to-Mesenchymal Transition by Alternative Translation Initiation Mechanisms and Its Implications for Cancer Metastasis. International Journal of Molecular Sciences, 2020, 21, 4075.	4.1	15
9	Identification of a circulating miRNA signature in extracellular vesicles collected from amyotrophic lateral sclerosis patients. Brain Research, 2019, 1708, 100-108.	2.2	82
10	Proteome profiling of extracellular vesicles captured with the affinity peptide Vn96: comparison of Laemmli and TRIzol© proteinâ€extraction methods. Journal of Extracellular Vesicles, 2018, 7, 1438727.	12.2	24
11	PML nuclear bodies contribute to the basal expression of the mTOR inhibitor DDIT4. Scientific Reports, 2017, 7, 45038.	3.3	15
12	Methylarginines within the RGG-Motif Region of hnRNP A1 Affect Its IRES Trans-Acting Factor Activity and Are Required for hnRNP A1 Stress Granule Localization and Formation. Journal of Molecular Biology, 2017, 429, 295-307.	4.2	57
13	CD24 induces changes to the surface receptors of B cell microvesicles with variable effects on their RNA and protein cargo. Scientific Reports, 2017, 7, 8642.	3.3	29
14	Decreased eIF3e Expression Can Mediate Epithelial-to-Mesenchymal Transition through Activation of the TGFÎ ² Signaling Pathway. Molecular Cancer Research, 2015, 13, 1421-1430.	3.4	18
15	Epigenetic therapy restores normal hematopoiesis in a zebrafish model of NUP98–HOXA9-induced myeloid disease. Leukemia, 2015, 29, 2086-2097.	7.2	38
16	Rapid Isolation of Extracellular Vesicles from Cell Culture and Biological Fluids Using a Synthetic Peptide with Specific Affinity for Heat Shock Proteins. PLoS ONE, 2014, 9, e110443.	2.5	161
17	A transgenic zebrafish model expressing <i><scp>KlT</scp></i> â€ <scp>D</scp> 816 <scp>V</scp> recapitulates features of aggressive systemic mastocytosis. British Journal of Haematology, 2014, 167, 48-61.	2.5	18
18	Decreased elF3e/Int6 expression causes epithelial-to-mesenchymal transition in breast epithelial cells. Oncogene, 2013, 32, 3598-3605.	5.9	33

STEPHEN M LEWIS

#	Article	IF	CITATIONS
19	Tumor Suppressor PDCD4 Represses Internal Ribosome Entry Site-Mediated Translation of Antiapoptotic Proteins and Is Regulated by S6 Kinase 2. Molecular and Cellular Biology, 2012, 32, 1818-1829.	2.3	78
20	RNA-binding protein HuR mediates cytoprotection through stimulation of XIAP translation. Oncogene, 2011, 30, 1460-1469.	5.9	80
21	The Yeast Arf GTPase-activating Protein Age1 Is Regulated by Phospholipase D for Post-Golgi Vesicular Transport. Journal of Biological Chemistry, 2011, 286, 5187-5196.	3.4	9
22	Multiple isoforms of <i>PAX5</i> are expressed in both lymphomas and normal B ells. British Journal of Haematology, 2009, 147, 328-338.	2.5	21
23	hnRNP A1 regulates UV-induced NF-κB signalling through destabilization of cIAP1 mRNA. Cell Death and Differentiation, 2009, 16, 244-252.	11.2	44
24	For IRES trans-acting factors, it is all about location. Oncogene, 2008, 27, 1033-1035.	5.9	75
25	Post-transcriptional control of gene expression through subcellular relocalization of mRNA binding proteins. Biochemical Pharmacology, 2008, 76, 1395-1403.	4.4	21
26	RNA-Binding Proteins HuR and PTB Promote the Translation of Hypoxia-Inducible Factor 1α. Molecular and Cellular Biology, 2008, 28, 93-107.	2.3	257
27	A search for structurally similar cellular internal ribosome entry sites. Nucleic Acids Research, 2007, 35, 4664-4677.	14.5	70
28	Subcellular Relocalization of a Trans-acting Factor Regulates XIAP IRES-dependent Translation. Molecular Biology of the Cell, 2007, 18, 1302-1311.	2.1	99
29	Cytoplasmic Relocalization of Heterogeneous Nuclear Ribonucleoprotein A1 Controls Translation Initiation of Specific mRNAs. Molecular Biology of the Cell, 2007, 18, 5048-5059.	2.1	128
30	The eIF4G homolog DAP5/p97 supports the translation of select mRNAs during endoplasmic reticulum stress. Nucleic Acids Research, 2007, 36, 168-178.	14.5	72
31	An Approach to Whole-Genome Identification of IRES Elements. Current Genomics, 2006, 7, 205-215.	1.6	3
32	Internal Ribosome Entry Site-mediated Translation of Apaf-1, but Not XIAP, Is Regulated during UV-induced Cell Death*. Journal of Biological Chemistry, 2006, 281, 15155-15163.	3.4	38
33	IRES in distress: translational regulation of the inhibitor of apoptosis proteins XIAP and HIAP2 during cell stress. Cell Death and Differentiation, 2005, 12, 547-553.	11.2	47
34	Spurious splicing within the XIAP 5' UTR occurs in the Rluc/Fluc but not the Âgal/CAT bicistronic reporter system. Rna, 2005, 11, 1605-1609.	3.5	57
35	The ArfGAP Glo3 Is Required for the Generation of COPI Vesicles. Molecular Biology of the Cell, 2004, 15, 4064-4072.	2.1	64