Xue-Yuan Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2172545/publications.pdf

Version: 2024-02-01

37 papers	5,506	16	32
	citations	h-index	g-index
39	39	39	14687
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Establishment of the induced pluripotent stem cell line PLAFMCi006-A from peripheral blood mononuclear cells of polycystic kidney disease patients with PKD2 gene mutation. Stem Cell Research, 2022, 60, 102681.	0.7	1
2	Role of NOD-Like Receptors in a Miniature Pig Model of Diabetic Renal Injuries. Mediators of Inflammation, 2022, 2022, 1-9.	3.0	2
3	Establishment of PLAFMCi007-A, an induced pluripotent stem cell line, from peripheral blood mononuclear cells (PBMCs) of a healthy adult woman. Stem Cell Research, 2022, 61, 102760.	0.7	0
4	Establishment of PLAFMCi004-A induced pluripotent stem cells derived from PBMCs from a healthy individual. Stem Cell Research, 2021, 53, 102316.	0.7	0
5	Establishment of PLAFMCi005-A induced pluripotent stem cells derived from PBMC from a patient with renal cysts and diabetes syndrome. Stem Cell Research, 2021, 55, 102485.	0.7	1
6	Generation of induced pluripotent stem cell PLAFMCi002-A derived from peripheral blood mononuclear cells of polycystic kidney disease patient with PKD1 mutation. Stem Cell Research, 2020, 49, 102039.	0.7	0
7	Multifunctional Natural Polymer Nanoparticles as Antifibrotic Gene Carriers for CKD Therapy. Journal of the American Society of Nephrology: JASN, 2020, 31, 2292-2311.	6.1	29
8	Ganab Haploinsufficiency Does Not Cause Polycystic Kidney Disease or Polycystic Liver Disease in Mice. BioMed Research International, 2020, 2020, 1-7.	1.9	1
9	ROBO2-mediated RALDH2 signaling is required for common nephric duct fusion with primitive bladder. Developmental Biology, 2020, 464, 103-110.	2.0	0
10	Chlorzoxazone, a small molecule drug, augments immunosuppressive capacity of mesenchymal stem cells via modulation of FOXO3 phosphorylation. Cell Death and Disease, 2020, 11, 158.	6.3	18
11	Autophagy and Acute Kidney Injury. Advances in Experimental Medicine and Biology, 2020, 1207, 469-480.	1.6	11
12	Autophagy and Glomerular Diseases. Advances in Experimental Medicine and Biology, 2020, 1207, 481-486.	1.6	2
13	Autophagy and Diabetic Nephropathy. Advances in Experimental Medicine and Biology, 2020, 1207, 487-494.	1.6	17
14	The role of transcriptional factor D-site-binding protein in circadian CCL2 gene expression in anti-Thy1 nephritis. Cellular and Molecular Immunology, 2019, 16, 735-745.	10.5	22
15	STAT3 Inhibition Partly Abolishes IL-33–Induced Bone Marrow–Derived Monocyte Phenotypic Transition into Fibroblast Precursor and Alleviates Experimental Renal Interstitial Fibrosis. Journal of Immunology, 2019, 203, 2644-2654.	0.8	10
16	Low-dose 2-deoxyglucose and metformin synergically inhibit proliferation of human polycystic kidney cells by modulating glucose metabolism. Cell Death Discovery, 2019, 5, 76.	4.7	26
17	Metanephric mesenchyme-derived Foxd1+ mesangial precursor cells alleviate mesangial proliferative glomerulonephritis. Journal of Molecular Medicine, 2019, 97, 553-561.	3.9	10
18	The combination of metformin and 2â€deoxyglucose significantly inhibits cyst formation in miniature pigs with polycystic kidney disease. British Journal of Pharmacology, 2019, 176, 711-724.	5.4	49

#	Article	IF	Citations
19	Disruption of Robo2-Baiap2 integrated signaling drives cystic disease. JCI Insight, 2019, 4, .	5.0	7
20	Exogenous biological renal support ameliorates renal pathology after ischemia reperfusion injury in elderly mice. Aging, 2019, 11, 2031-2044.	3.1	3
21	Modulation of Macrophage Polarization by Human Glomerular Mesangial Cells in Response to the Stimuli in Renal Microenvironment. Journal of Interferon and Cytokine Research, 2018, 38, 566-577.	1.2	6
22	Identification of proteins potentially associated with renal aging in rats. Aging, 2018, 10, 1192-1205.	3.1	4
23	B lymphocytes in renal interstitial fibrosis. Journal of Cell Communication and Signaling, 2017, 11, 213-218.	3.4	9
24	The changes in glucose metabolism and cell proliferation in the kidneys of polycystic kidney disease mini-pig models. Biochemical and Biophysical Research Communications, 2017, 488, 374-381.	2.1	14
25	Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats. Scientific Reports, 2016, 6, 30292.	3.3	26
26	NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1-12.	3.6	5
27	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
28	The Expression Changes of Inflammasomes in the Aging Rat Kidneys. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 747-756.	3.6	26
29	<i>PKD1</i> Mono-Allelic Knockout Is Sufficient to Trigger Renal Cystogenesis in a Mini-Pig Model. International Journal of Biological Sciences, 2015, 11, 361-369.	6.4	25
30	Beneficial Effects of Caloric Restriction on Chronic Kidney Disease in Rodent Models: A Meta-Analysis and Systematic Review. PLoS ONE, 2015, 10, e0144442.	2.5	30
31	Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Scientific Reports, 2015, 5, 11256.	3.3	47
32	Role of Toll-like receptors in diabetic renal lesions in a miniature pig model. Science Advances, 2015, 1, e1400183.	10.3	33
33	miR-184 and miR-150 promote renal glomerular mesangial cell aging by targeting Rab1a and Rab31. Experimental Cell Research, 2015, 336, 192-203.	2.6	43
34	Changes in the Expression of the Toll-Like Receptor System in the Aging Rat Kidneys. PLoS ONE, 2014, 9, e96351.	2.5	26
35	miR-34a regulates mesangial cell proliferation via the PDGFR-β/Ras-MAPK signaling pathway. Cellular and Molecular Life Sciences, 2014, 71, 4027-4042.	5.4	34
36	Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage. Mechanisms of Ageing and Development, 2013, 134, 570-579.	4.6	71

#	Article	IF	CITATIONS
37	miR-335 and miR-34a Promote Renal Senescence by Suppressing Mitochondrial Antioxidative Enzymes. Journal of the American Society of Nephrology: JASN, 2011, 22, 1252-1261.	6.1	197