
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2172497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetics of photon upconversion by triplet–triplet annihilation: a comprehensive tutorial. Physical Chemistry Chemical Physics, 2021, 23, 18268-18282.	2.8	37
2	Thermogalvanic energy harvesting from forced convection cooling of 100–200 °C surfaces generating high power density. Sustainable Energy and Fuels, 2021, 5, 5967-5974.	4.9	13
3	Thermal transport properties of an oriented thin film of a paraffinic tripodal triptycene. Japanese Journal of Applied Physics, 2021, 60, 038002.	1.5	3
4	lonic additive strategy to control nucleation and generate larger single crystals of 3D covalent organic frameworks. Chemical Communications, 2021, 57, 6656-6659.	4.1	9
5	van der Waals solid solution crystals for highly efficient in-air photon upconversion under subsolar irradiance. Materials Horizons, 2021, 8, 3449-3456.	12.2	17
6	Visible-to-ultraviolet (<340 nm) photon upconversion by triplet–triplet annihilation in solvents. Physical Chemistry Chemical Physics, 2020, 22, 27134-27143.	2.8	24
7	Integration of Thermo-Electrochemical Conversion into Forced Convection Cooling. ECS Meeting Abstracts, 2020, MA2020-01, 128-128.	0.0	0
8	Integration of thermo-electrochemical conversion into forced convection cooling. Physical Chemistry Chemical Physics, 2019, 21, 25838-25848.	2.8	13
9	Triplet-sensitized photon upconversion in deep eutectic solvents. Physical Chemistry Chemical Physics, 2017, 19, 30603-30615.	2.8	27
10	Transparent and Nonflammable Ionogel Photon Upconverters and Their Solute Transport Properties. Journal of Physical Chemistry B, 2016, 120, 748-755.	2.6	28
11	Ionic Liquid Dependence of Triplet-Sensitized Photon Upconversion. Journal of Physical Chemistry B, 2014, 118, 14442-14451.	2.6	21
12	Photocurrent Quantum Yield of Semiconducting Carbon Nanotubes: Dependence on Excitation Energy and Exciton Binding Energy. Journal of Physical Chemistry C, 2014, 118, 18059-18063.	3.1	8
13	Influence of Zeolite Catalyst Supports on the Synthesis of Single-Walled Carbon Nanotubes: Framework Structures and Si/Al Ratios. Journal of Physical Chemistry C, 2014, 118, 23664-23669.	3.1	6
14	PS14 Monte Carlo simulations on the influence of the initial powder structure on sintering behaviour during SOFC anode fabrication. The Proceedings of the Materials and Mechanics Conference, 2014, 2014, _PS14-1PS14-3	0.0	0
15	Optical Extinction Spectra of Silicon Nanocrystals: Size Dependence upon the Lowest Direct Transition. Langmuir, 2013, 29, 1802-1807.	3.5	32
16	Kinetics of Photon Upconversion in Ionic Liquids: Time-Resolved Analysis of Delayed Fluorescence. Journal of Physical Chemistry B, 2013, 117, 5180-5187.	2.6	26
17	Kinetics of Photon Upconversion in Ionic Liquids: Energy Transfer between Sensitizer and Emitter Molecules. Journal of Physical Chemistry B, 2013, 117, 2487-2494.	2.6	27
18	Diameter Modulation of Vertically Aligned Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 7472-7479.	14.6	52

#	Article	IF	CITATIONS
19	Semiconducting carbon nanotubes exciton probed by electroabsorption spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 932-935.	2.7	1
20	Zeolite Surface As a Catalyst Support Material for Synthesis of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 24231-24237.	3.1	19
21	Electroabsorption study of index-defined semiconducting carbon nanotubes. EPJ Applied Physics, 2011, 55, 20401.	0.7	6
22	Photochemical photon upconverters with ionic liquids. Chemical Physics Letters, 2011, 516, 56-61.	2.6	41
23	Isotope-induced elastic scattering of optical phonons in individual suspended single-walled carbon nanotubes. Applied Physics Letters, 2011, 99, 093104.	3.3	4
24	Aharonov-Bohm exciton splitting in the optical absorption of chiral-specific single-walled carbon nanotubes in magnetic fields up to 78 T. Physical Review B, 2011, 83, .	3.2	17
25	Magneto-Absorption Spectra from Selected Chirality ofÂSingle-Walled Carbon Nanotubes. Journal of Low Temperature Physics, 2010, 159, 267-271.	1.4	1
26	Parametric Study of Alcohol Catalytic Chemical Vapor Deposition for Controlled Synthesis of Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3901-3906.	0.9	14
27	Polarization dependence of radial breathing mode peaks in resonant Raman spectra of vertically aligned single-walled carbon nanotubes. Physical Review B, 2010, 81, .	3.2	17
28	Exciton Diffusion in Air-Suspended Single-Walled Carbon Nanotubes. Physical Review Letters, 2010, 104, 247402.	7.8	94
29	Controllable Expansion of Single-Walled Carbon Nanotube Dispersions Using Density Gradient Ultracentrifugation. Journal of Physical Chemistry C, 2010, 114, 4831-4834.	3.1	49
30	Nonlinear Photoluminescence Excitation Spectroscopy of Carbon Nanotubes: Exploring the Upper Density Limit of One-Dimensional Excitons. Physical Review Letters, 2009, 102, 037401.	7.8	70
31	Effect of dielectric environment on the ultraviolet optical absorption of single-walled carbon nanotubes. Physical Review B, 2009, 79, .	3.2	18
32	Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory. Physical Review B, 2009, 80, .	3.2	28
33	Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels. Physical Review B, 2009, 79, .	3.2	51
34	An Analytical System for Single Nanomaterials: Combination of Capillary Electrophoresis with Raman Spectroscopy or with Scanning Probe Microscopy for Individual Single-Walled Carbon Nanotube Analysis. Analytical Chemistry, 2009, 81, 7336-7341.	6.5	28
35	High-Precision Selective Deposition of Catalyst for Facile Localized Growth of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 10344-10345.	13.7	30
36	Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon, 2008, 46, 923-930.	10.3	116

#	Article	IF	CITATIONS
37	Temperature Dependence of Raman Scattering from Single-Walled Carbon Nanotubes: Undefined Radial Breathing Mode Peaks at High Temperatures. Japanese Journal of Applied Physics, 2008, 47, 2010.	1.5	58
38	Exciton fine structure in a single carbon nanotube revealed through spectral diffusion. Physical Review B, 2008, 77, .	3.2	28
39	Exciton dephasing and multiexciton recombinations in a single carbon nanotube. Physical Review B, 2008, 77, .	3.2	78
40	Anisotropic decay dynamics of photoexcited aligned carbon nanotube bundles. Physical Review B, 2007, 75, .	3.2	14
41	Excitonic transition energies in single-walled carbon nanotubes: Dependence on environmental dielectric constant. Physica Status Solidi (B): Basic Research, 2007, 244, 4002-4005.	1.5	84
42	Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Physical Review B, 2006, 73, .	3.2	111
43	A simple combinatorial method to discover Co–Mo binary catalysts that grow vertically aligned single-walled carbon nanotubes. Carbon, 2006, 44, 1414-1419.	10.3	86
44	Detachment of vertically aligned single-walled carbon nanotube films from substrates and their re-attachment to arbitrary surfaces. Chemical Physics Letters, 2006, 422, 575-580.	2.6	54
45	Synthesis of single-walled carbon nanotubes in mesoporous silica film and their field emission property. Applied Physics A: Materials Science and Processing, 2006, 84, 247-250.	2.3	11
46	Mode-Locked Fiber Lasers Using Adjustable Saturable Absorption in Vertically Aligned Carbon Nanotubes. Japanese Journal of Applied Physics, 2006, 45, L17-L19.	1.5	25
47	Diameter dependence of exciton-phonon interaction in individual single-walled carbon nanotubes studied by microphotoluminescence spectroscopy. Physical Review B, 2006, 73, .	3.2	42
48	Polarization dependent optical absorption properties of single-walled carbon nanotubes and methodology for the evaluation of their morphology. Carbon, 2005, 43, 2664-2676.	10.3	83
49	Growth process of vertically aligned single-walled carbon nanotubes. Chemical Physics Letters, 2005, 403, 320-323.	2.6	172
50	Polarization dependence of resonant Raman scattering from vertically aligned single-walled carbon nanotube films. Physical Review B, 2005, 71, .	3.2	31
51	Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes. Applied Physics Letters, 2005, 86, 173106.	3.3	49
52	Polarization Dependence of the Optical Absorption of Single-Walled Carbon Nanotubes. Physical Review Letters, 2005, 94, 087402.	7.8	238
53	Synthesis of carbon nanotube peapods directly on Si substrates. Applied Physics Letters, 2005, 86, 023109.	3.3	15
54	Direct Synthesis of Single-Walled Carbon Nanotubes on Silicon and Quartz-Based Systems. Japanese Journal of Applied Physics, 2004, 43, 1221-1226.	1.5	31

#	Article	IF	CITATIONS
55	Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chemical Physics Letters, 2004, 385, 298-303.	2.6	522
56	Growth of single-walled carbon nanotubes from size-selected catalytic metal particles. Applied Physics A: Materials Science and Processing, 2004, 79, 787-790.	2.3	24
57	Morphology and chemical state of Co?Mo catalysts for growth ofBsingle-walled carbon nanotubes vertically aligned on quartz substrates. Journal of Catalysis, 2004, 225, 230-239.	6.2	133
58	Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage. Chemical Physics Letters, 2004, 386, 89-94.	2.6	82
59	Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chemical Physics Letters, 2004, 387, 198-203.	2.6	299
60	Purification and characterization of zeolite-supported single-walled carbon nanotubes catalytically synthesized from ethanol. Chemical Physics Letters, 2004, 392, 529-532.	2.6	36
61	Generation of Single-Walled Carbon Nanotubes from Alcohol and Generation Mechanism by Molecular Dynamics Simulations. Journal of Nanoscience and Nanotechnology, 2004, 4, 360-367.	0.9	28
62	Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol. Chemical Physics Letters, 2003, 374, 53-58.	2.6	173
63	Single-walled carbon nanotubes catalytically grown from mesoporous silica thin film. Chemical Physics Letters, 2003, 375, 393-398.	2.6	56
64	Synthesis of single-walled carbon nanotubes with narrow diameter-distribution from fullerene. Chemical Physics Letters, 2003, 375, 553-559.	2.6	35
65	Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chemical Physics Letters, 2003, 377, 49-54.	2.6	201
66	Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol. New Journal of Physics, 2003, 5, 149-149.	2.9	57
67	Parametric Investigation of Viscous Dissipation Effects on Optimized Air Cooling Microchanneled Heat Sinks. Heat Transfer Engineering, 2003, 24, 53-62.	1.9	7
68	Surfactant-Stabilized Single-Walled Carbon Nanotubes Using Triphenylene Derivatives Remain Individually Dispersion in Both Liquid and Dried Solid States. Applied Physics Express, 0, 2, 055501.	2.4	12