
Véronique Balland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2171912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Functionalization of Carbon Surfaces by Aromatic Azide or Alkyne Molecules: A Versatile Platform for Click Chemistry. Chemistry - A European Journal, 2008, 14, 9286-9291.	3.3	136
2	Importance of dynamical processes in the coordination chemistry and redox conversion of copper amyloid-β complexes. Journal of Biological Inorganic Chemistry, 2009, 14, 995-1000.	2.6	116
3	Electrochemical and homogeneous electron transfers to the Alzheimer amyloid-Î ² copper complex follow a preorganization mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17113-17118.	7.1	108
4	Spectroscopic Characterization of an FeIV Intermediate Generated by Reaction of XOâ^' (X = Cl, Br) with an FeII Complex Bearing a Pentadentate Non-Porphyrinic Ligandâ^' Hydroxylation and Epoxidation Activity. European Journal of Inorganic Chemistry, 2004, 2004, 301-308.	2.0	89
5	ATP Binding Turns Plant Cryptochrome Into an Efficient Natural Photoswitch. Scientific Reports, 2014, 4, 5175.	3.3	77
6	Accessing the Twoâ€Electron Charge Storage Capacity of MnO ₂ in Mild Aqueous Electrolytes. Advanced Energy Materials, 2020, 10, 2000332.	19.5	69
7	What Makes the Difference between a Cryptochrome and DNA Photolyase? A Spectroelectrochemical Comparison of the Flavin Redox Transitions. Journal of the American Chemical Society, 2009, 131, 426-427.	13.7	68
8	Unraveling the Mechanism of Catalytic Reduction of O ₂ by Microperoxidase-11 Adsorbed within a Transparent 3D-Nanoporous ITO Film. Journal of the American Chemical Society, 2012, 134, 6834-6845.	13.7	58
9	Fe(II) and Fe(III) Mononuclear Complexes with a Pentadentate Ligand Built on the 1,3-Diaminopropane Unit. Structures and Spectroscopic and Electrochemical Properties. Reaction with H2O2. Inorganic Chemistry, 2003, 42, 2470-2477.	4.0	56
10	Oriented Immobilization of a Fully Active Monolayer of Histidineâ€Tagged Recombinant Laccase on Modified Gold Electrodes. Chemistry - A European Journal, 2008, 14, 7186-7192.	3.3	54
11	High redox potential laccases from the ligninolytic fungi <i>Pycnoporus coccineus</i> and <i>Pycnoporus sanguineus</i> suitable for white biotechnology: from gene cloning to enzyme characterization and applications. Journal of Applied Microbiology, 2009, 108, 2199-213.	3.1	53
12	Non-heme iron polyazadentate complexes as catalysts for oxidations by H2O2: particular efficiency in aromatic hydroxylations and beneficial effects of a reducing agent. Journal of Molecular Catalysis A, 2004, 215, 81-87.	4.8	51
13	Evidencing Fast, Massive, and Reversible H ⁺ Insertion in Nanostructured TiO ₂ Electrodes at Neutral pH. Where Do Protons Come From?. Journal of Physical Chemistry C, 2017, 121, 10325-10335.	3.1	48
14	On the unsuspected role of multivalent metal ions on the charge storage of a metal oxide electrode in mild aqueous electrolytes. Chemical Science, 2019, 10, 8752-8763.	7.4	42
15	Characterization of the Electron Transfer of a Ferrocene Redox Probe and a Histidine-Tagged Hemoprotein Specifically Bound to a Nitrilotriacetic-Terminated Self-Assembled Monolayer. Langmuir, 2009, 25, 6532-6542.	3.5	39
16	Spectroelectrochemical Characterization of Small Hemoproteins Adsorbed within Nanostructured Mesoporous ITO Electrodes. Langmuir, 2012, 28, 14065-14072.	3.5	39
17	Evidence of Bulk Proton Insertion in Nanostructured Anatase and Amorphous TiO ₂ Electrodes. Chemistry of Materials, 2021, 33, 3436-3448.	6.7	37
18	Iron Complexes Containing the Ligand N,N-Bis(6-methyl-2-pyridylmethyl)-N,N-bis(2-pyridylmethyl)ethane-1,2-diamine: Structural, Spectroscopic, and Electrochemical Studies, Reactivity with Hydrogen Peroxide and the Formation of a Low-Spin Feâ^'OOH Complex. European Journal of Inorganic Chemistry, 2003, 2003, 2529-2535.	2.0	36

Véronique Balland

#	Article	IF	CITATIONS
19	Role of Arginine 220 in the Oxygen Sensor FixL from Bradyrhizobium japonicum. Journal of Biological Chemistry, 2005, 280, 15279-15288.	3.4	33
20	Bio-inspired iron catalysts for degradation of aromatic pollutants and alkane hydroxylation. Comptes Rendus Chimie, 2002, 5, 99-109.	0.5	32
21	Time-resolved UV-visible spectroelectrochemistry using transparent 3D-mesoporous nanocrystalline ITO electrodes. Chemical Communications, 2011, 47, 1863-1865.	4.1	32
22	Mono- and dinuclear FeIII complexes with the tridentate N-ethyl-N-(2-aminoethyl)salicylaldiminato ligand. X-ray structures, magnetic and spectroscopic properties. Inorganica Chimica Acta, 2003, 353, 223-230.	2.4	31
23	Role of Distal Arginine in Early Sensing Intermediates in the Heme Domain of the Oxygen Sensor FixLâ€. Biochemistry, 2006, 45, 6018-6026.	2.5	28
24	Role of Arginine Guanidinium Moiety in Nitric-oxide Synthase Mechanism of Oxygen Activation. Journal of Biological Chemistry, 2010, 285, 7233-7245.	3.4	27
25	Functional Implications of the Propionate 7â^'Arginine 220 Interaction in the FixLH Oxygen Sensor from Bradyrhizobium japonicum. Biochemistry, 2006, 45, 2072-2084.	2.5	26
26	Mn-Mimochrome VI*a: An Artificial Metalloenzyme With Peroxygenase Activity. Frontiers in Chemistry, 2018, 6, 590.	3.6	23
27	Nanostructured Electrode Enabling Fast and Fully Reversible MnO ₂ -to-Mn ²⁺ Conversion in Mild Buffered Aqueous Electrolytes. ACS Applied Energy Materials, 2020, 3, 7610-7618.	5.1	23
28	Highly ordered transparent mesoporous TiO2 thin films: an attractive matrix for efficient immobilization and spectroelectrochemical characterization of cytochrome c. Chemical Communications, 2009, , 7494.	4.1	21
29	Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO ₂ films by voltabsorptometry. Physical Chemistry Chemical Physics, 2015, 17, 10592-10607.	2.8	21
30	Efficient Chemisorption of Organophosphorous Redox Probes on Indium Tin Oxide Surfaces under Mild Conditions. Langmuir, 2015, 31, 1931-1940.	3.5	19
31	Spectroelectrochemistry of Fe ^{III} - and Co ^{III} -mimochrome VI artificial enzymes immobilized on mesoporous ITO electrodes. Chemical Communications, 2014, 50, 1894-1896.	4.1	18
32	Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO ₂ mesoporous film. Physical Chemistry Chemical Physics, 2017, 19, 17944-17951.	2.8	18
33	The Role of Al ³⁺ â€Based Aqueous Electrolytes in the Charge Storage Mechanism of MnO <i>_x</i> Cathodes. Small, 2021, 17, e2101515.	10.0	18
34	Electrophilic sulfhydration of 8-nitro-cGMP involves sulfane sulfur. Organic and Biomolecular Chemistry, 2014, 12, 5360-5364.	2.8	15
35	Introducing Molecular Functionalities within High Surface Area Nanostructured ITO Electrodes through Diazonium Electrografting. ChemElectroChem, 2018, 5, 1625-1630.	3.4	15
36	Towards a high MnO ₂ loading and gravimetric capacity from proton-coupled Mn ⁴⁺ /Mn ²⁺ reactions using a 3D free-standing conducting scaffold. Journal of Materials Chemistry A, 2021, 9, 1500-1506.	10.3	12

#	Article	IF	CITATIONS
37	Toward Stable Electron Paramagnetic Resonance Oximetry Probes: Synthesis, Characterization, and Metabolic Evaluation of New Ester Derivatives of a Tris-(<i>para</i> -carboxyltetrathiaaryl)methyl (TAM) Radical. Chemical Research in Toxicology, 2013, 26, 1561-1569.	3.3	10
38	Substrate interaction dynamics and oxygen control in the active site of thymidylate synthase ThyX. Biochemical Journal, 2014, 459, 37-45.	3.7	9
39	Synthesis, Structure and Characterizations in Solid State and Solution of Dinuclear Pentacoordinated Fell and MnII Complexes and of a Linear Tetranuclear FellI Complex Obtained with the LigandN,N,N′,N′-Tetrakis[(6-methyl-2-pyridyl)methyl]propane-1,3-diamine. European Journal of Inorganic Chemistry. 2004. 2004. 1225-1233.	2.0	8
40	An optical H2S biosensor based on the chemoselective Hb-I protein tethered to a transparent, high surface area nanocolumnar electrode. Sensors and Actuators B: Chemical, 2019, 290, 326-335.	7.8	8
41	Tuning the reactivity of nanostructured indium tin oxide electrodes toward chemisorption. Chemical Communications, 2015, 51, 6944-6947.	4.1	7
42	Chronoabsorptometry To Investigate Conduction-Band-Mediated Electron Transfer in Mesoporous TiO ₂ Thin Films. Journal of Physical Chemistry C, 2015, 119, 14929-14937.	3.1	5
43	Investigating Charge Transfer in Functionalized Mesoporous EISA–SnO ₂ Films. Journal of Physical Chemistry C, 2017, 121, 23207-23217.	3.1	1
44	Interplay Between Charge Accumulation and Oxygen Reduction Catalysis in Nanostructured TiO 2 Electrodes Functionalized with a Molecular Catalyst. ChemElectroChem, 2021, 8, 2640-2648.	3.4	1
45	Bioinspired Iron Catalysts for Degradation of Aromatic Pollutants and Alkane Hydroxylation. ChemInform, 2002, 33, 270-270.	0.0	0