
Aline V Probst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2171836/publications.pdf Version: 2024-02-01

ALINE V PROBST

#	Article	IF	CITATIONS
1	Gene dosage compensation of rRNA transcript levels in <i>Arabidopsis thaliana</i> lines with reduced ribosomal gene copy number. Plant Cell, 2021, 33, 1135-1150.	6.6	28
2	The Histone Chaperone HIRA Is a Positive Regulator of Seed Germination. International Journal of Molecular Sciences, 2021, 22, 4031.	4.1	9
3	The H3 histone chaperone NASP ^{SIM3} escorts CenH3 in Arabidopsis. Plant Journal, 2020, 101, 71-86.	5.7	37
4	Untangling chromatin interactions. Journal of Experimental Botany, 2020, 71, 5115-5118.	4.8	1
5	Automated 3D bio-imaging analysis of nuclear organization by NucleusJ 2.0. Nucleus, 2020, 11, 315-329.	2.2	18
6	Similar yet critically different: the distribution, dynamics and function of histone variants. Journal of Experimental Botany, 2020, 71, 5191-5204.	4.8	39
7	Looking At the Past and Heading to the Future: Meeting Summary of the 6th European Workshop on Plant Chromatin 2019 in Cologne, Germany. Frontiers in Plant Science, 2020, 10, 1795.	3.6	0
8	Replication oupled histone H3.1 deposition determines nucleosome composition and heterochromatin dynamics during Arabidopsis seedling development. New Phytologist, 2019, 221, 385-398.	7.3	32
9	Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucleic Acids Research, 2018, 46, 3019-3033.	14.5	65
10	A Compendium of Methods to Analyze the Spatial Organization of Plant Chromatin. Methods in Molecular Biology, 2018, 1675, 397-418.	0.9	7
11	High-Affinity LNA–DNA Mixmer Probes for Detection of Chromosome-Specific Polymorphisms of 5S rDNA Repeats in Arabidopsis thaliana. Methods in Molecular Biology, 2018, 1675, 481-491.	0.9	7
12	Meeting report – INDEPTH kick-off meeting. Journal of Cell Science, 2018, 131, jcs220558.	2.0	4
13	The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. Journal of Cell Science, 2017, 130, 590-601.	2.0	65
14	Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression. Plant Cell, 2017, 29, 1773-1793.	6.6	35
15	Exploring the evolution of the proteins of the plant nuclear envelope. Nucleus, 2017, 8, 46-59.	2.2	46
16	Structure and Function of Centromeric and Pericentromeric Heterochromatin in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 1049.	3.6	56
17	<i>NucleusJ</i> : an ImageJ plugin for quantifying 3D images of interphase nuclei. Bioinformatics, 2015, 31, 1144-1146.	4.1	48
18	Stress-induced structural changes in plant chromatin. Current Opinion in Plant Biology, 2015, 27, 8-16.	7.1	154

ALINE V PROBST

#	Article	IF	CITATIONS
19	The histone chaperone complex <scp>HIR</scp> maintains nucleosome occupancy and counterbalances impaired histone deposition in <scp>CAF</scp> â€1 complex mutants. Plant Journal, 2015, 81, 707-722.	5.7	46
20	Evolutionary history of Methyltransferase 1 genes in hexaploid wheat. BMC Genomics, 2014, 15, 922.	2.8	12
21	The plant LINC complex at the nuclear envelope. Chromosome Research, 2014, 22, 241-252.	2.2	29
22	Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. Journal of Experimental Botany, 2014, 65, 6499-6512.	4.8	66
23	Heterochromatin dynamics during developmental transitions in Arabidopsis — a focus on ribosomal DNA loci. Gene, 2013, 526, 39-45.	2.2	23
24	Heterochromatin Reorganization during Early Mouse Development Requires a Single-Stranded Noncoding Transcript. Cell Reports, 2013, 4, 1156-1167.	6.4	86
25	Structure, function and regulation of Transcription Factor IIIA: From Xenopus to Arabidopsis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 274-282.	1.9	26
26	Heterochromatin maintenance and establishment: Lessons from the mouse pericentromere. Nucleus, 2011, 2, 332-338.	2.2	81
27	SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin. Nature Genetics, 2011, 43, 220-227.	21.4	191
28	Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends in Genetics, 2011, 27, 177-185.	6.7	114
29	A Strand-Specific Burst in Transcription of Pericentric Satellites Is Required for Chromocenter Formation and Early Mouse Development. Developmental Cell, 2010, 19, 625-638.	7.0	273
30	Heterochromatin at Mouse Pericentromeres: A Model for De Novo Heterochromatin Formation and Duplication during Replication. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 155-165.	1.1	29
31	Epigenetic inheritance during the cell cycle. Nature Reviews Molecular Cell Biology, 2009, 10, 192-206.	37.0	707
32	Pericentric heterochromatin: dynamic organization during early development in mammals. Differentiation, 2008, 76, 15-23.	1.9	95
33	Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma, 2007, 116, 403-415.	2.2	143
34	Epigenetic regulation of transcription in intermediate heterochromatin. EMBO Reports, 2006, 7, 1279-1284.	4.5	62
35	CAF-1 Is Essential for Heterochromatin Organization in Pluripotent Embryonic Cells. PLoS Genetics, 2006, 2, e181.	3.5	149
36	Functional Genomic Analysis of CAF-1 Mutants in Arabidopsis thaliana. Journal of Biological Chemistry, 2006, 281, 9560-9568.	3.4	119

ALINE V PROBST

#	Article	IF	CITATIONS
37	Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. EMBO Journal, 2005, 24, 2783-2791.	7.8	213
38	Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. Journal of Cell Science, 2005, 118, 3751-3758.	2.0	59
39	Arabidopsis Histone Deacetylase HDA6 Is Required for Maintenance of Transcriptional Gene Silencing and Determines Nuclear Organization of rDNA Repeats. Plant Cell, 2004, 16, 1021-1034.	6.6	264
40	Chromatin techniques for plant cells. Plant Journal, 2004, 39, 776-789.	5.7	359
41	BRU1, a novel link between responses to DNA damage and epigenetic gene silencing in Arabidopsis. Genes and Development, 2004, 18, 782-793.	5.9	197
42	Two means of transcriptional reactivation within heterochromatin. Plant Journal, 2003, 33, 743-749.	5.7	134
43	Erasure of CpG methylation in <i>Arabidopsis</i> alters patterns of histone H3 methylation in heterochromatin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8823-8827.	7.1	290
44	Two regulatory levels of transcriptional gene silencing in Arabidopsis. Proceedings of the National	7.1	80

Two regulatory levels of transcriptional gene silencing in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13659-13662. 44