Tao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/217142/publications.pdf

Version: 2024-02-01

	36303	46799
9,411	51	89
citations	h-index	g-index
179	179	11901
docs citations	times ranked	citing authors
	citations 179	9,411 51 citations h-index 179 179

#	Article	IF	Citations
1	Acetonitrile formation from ethane or ethylene through anaerobic ammodehydrogenation. Catalysis Today, 2023, 416, 113751.	4.4	5
2	Solvation Structure and Dynamics of Mg(TFSI) ₂ Aqueous Electrolyte. Energy and Environmental Materials, 2022, 5, 295-304.	12.8	19
3	A MnO _{<i>x</i>} enhanced atomically dispersed iron–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 5981-5989.	10.3	18
4	Insight into the nanostructure of "water in salt―solutions: A SAXS/WAXS study on imide-based lithium salts aqueous solutions. Energy Storage Materials, 2022, 45, 696-703.	18.0	19
5	Synthesis and Characterization of Mesoporous Silica Nanoparticles Loaded with Pt Catalysts. Catalysts, 2022, 12, 183.	3.5	8
6	Understanding Synthesis and Structural Variation of Nanomaterials Through In Situ/Operando XAS and SAXS. Small, 2022, 18, e2106017.	10.0	18
7	Syngas production at a near-unity H ₂ /CO ratio from photo-thermo-chemical dry reforming of methane on a Pt decorated Al ₂ O ₃ –CeO ₂ catalyst. Journal of Materials Chemistry A, 2022, 10, 7896-7910.	10.3	15
8	Ammonia-Assisted Light Alkane Anti-coke Reforming on Isolated ReO _{<i>x</i>} Sites in Zeolite. ACS Catalysis, 2022, 12, 3165-3172.	11.2	6
9	Understanding fluorine-free electrolytes via small-angle X-ray scattering. Journal of Energy Chemistry, 2022, 70, 340-346.	12.9	10
10	A visible to near-infrared nanocrystalline organic photodetector with ultrafast photoresponse. Journal of Materials Chemistry C, 2022, 10, 9391-9400.	5 . 5	8
11	Efficient Photothermochemical Dry Reforming of Methane over Ni Supported on ZrO2 with CeO2 Incorporation. Catalysis Today, 2022, , .	4.4	5
12	Ultralow-Loading Pt/Zn Hybrid Cluster in Zeolite HZSM-5 for Efficient Dehydroaromatization. Journal of the American Chemical Society, 2022, 144, 11831-11839.	13.7	22
13	An Ionâ€Imprinting Derived Strategy to Synthesize Singleâ€Atom Iron Electrocatalysts for Oxygen Reduction. Small, 2021, 17, e2004454.	10.0	52
14	Insights into the Nanostructure, Solvation, and Dynamics of Liquid Electrolytes through Smallâ€Angle Xâ€Ray Scattering. Advanced Energy Materials, 2021, 11, 2002821.	19.5	37
15	Bimetallic oxyhydroxide <i>in situ</i> derived from an Fe ₂ Co-MOF for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 13271-13278.	10.3	27
16	Cobalt ion redox and conductive polymers boosted the photocatalytic activity of the graphite carbon nitride–Co ₃ O ₄ Z-scheme heterostructure. New Journal of Chemistry, 2021, 45, 162-168.	2.8	6
17	Selective hydroxylation of aryl iodides to produce phenols under mild conditions using a supported copper catalyst. RSC Advances, 2021, 11, 25348-25353.	3.6	4
18	A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Metals, 2021, 40, 1431-1436.	7.1	42

#	Article	IF	CITATIONS
19	Screw dislocation-induced pyramidal crystallization of dendron-like macromolecules featuring asymmetric geometry. Chemical Science, 2021, 12, 12130-12137.	7.4	4
20	Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Liâ€Based Rechargeable Batteries. Advanced Science, 2021, 8, 2003675.	11.2	172
21	One-Pot Synthesis of Fe–N–C Species-Modified Carbon Nanotubes for ORR Electrocatalyst with Overall Enhanced Performance Superior to Pt/C. Nano, 2021, 16, 2150028.	1.0	5
22	Operando XAS/SAXS: Guiding Design of Singleâ€Atom and Subnanocluster Catalysts. Small Methods, 2021, 5, e2001194.	8.6	41
23	Design and Characterization of ALD-Based Overcoats for Supported Metal Nanoparticle Catalysts. ACS Catalysis, 2021, 11, 2605-2619.	11.2	16
24	Controlling Infrared Plasmon Resonances in Inverse-Spinel Cadmium Stannate Nanocrystals via Site-Selective Cation-Exchange Reactions. Chemistry of Materials, 2021, 33, 1954-1963.	6.7	8
25	Enhancing the performance of lithium oxygen batteries through combining redox mediating salts with a lithium protecting salt. Journal of Power Sources, 2021, 491, 229506.	7.8	15
26	Singleâ€Atomic Site Catalyst with Heme Enzymesâ€Like Active Sites for Electrochemical Sensing of Hydrogen Peroxide. Small, 2021, 17, e2100664.	10.0	66
27	Highly Dispersive Cerium Atoms on Carbon Nanowires as Oxygen Reduction Reaction Electrocatalysts for Zn–Air Batteries. Nano Letters, 2021, 21, 4508-4515.	9.1	89
28	Catalytic Light Alkanes Conversion through Anaerobic Ammodehydrogenation. ACS Catalysis, 2021, 11, 7987-7995.	11.2	8
29	Synthesis and Advanced Characterization of Polymer–Protein Core–Shell Nanoparticles. Catalysts, 2021, 11, 730.	3.5	2
30	Crowded electrolytes containing redoxmers in different states of charge: Solution structure, properties, and fundamental limits on energy density. Journal of Molecular Liquids, 2021, 334, 116533.	4.9	18
31	One-Step Chemical Vapor Deposition Synthesis of Hierarchical Ni and N Co-Doped Carbon Nanosheet/Nanotube Hybrids for Efficient Electrochemical CO ₂ Reduction at Commercially Viable Current Densities. ACS Catalysis, 2021, 11, 10333-10344.	11.2	32
32	Probing the Origin of Photocatalytic Effects in Photothermochemical Dry Reforming of Methane on a Pt/CeO ₂ Catalyst. Journal of Physical Chemistry C, 2021, 125, 18684-18692.	3.1	17
33	Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Applied Catalysis B: Environmental, 2021, 293, 120213.	20.2	123
34	Decoupling the degradation factors of Ni-rich NMC/Li metal batteries using concentrated electrolytes. Energy Storage Materials, 2021, 41, 222-229.	18.0	16
35	Microscopic Understanding of the Ionic Networks of "Water-in-Salt―Electrolytes. Energy Material Advances, 2021, 2021, .	11.0	20
36	Immobilization of Enzymes by Polymeric Materials. Catalysts, 2021, 11, 1211.	3.5	29

#	Article	IF	Citations
37	Understanding Solvation Behavior of the Saturated Electrolytes with Small/Wide-Angle X-ray Scattering and Raman Spectroscopy. Energy & Scattering and Raman Spectroscopy.	5.1	17
38	Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating. Applied Catalysis B: Environmental, 2020, 260, 118189.	20.2	115
39	Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy, 2020, 67, 104287.	16.0	124
40	Boosting the activity of Fe-Nx moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction. Science China Materials, 2020, 63, 965-971.	6.3	71
41	Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy, 2020, 68, 104384.	16.0	106
42	Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nature Materials, 2020, 19, 195-202.	27.5	237
43	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie - International Edition, 2020, 59, 3252-3257.	13.8	221
44	Conductive polymer supported and confined iron phosphide nanocrystals for boosting the photocatalytic hydrogen production of graphitic carbon nitride. Journal of Materials Chemistry C, 2020, 8, 14540-14547.	5.5	15
45	Efficient Construction of a C60 Interlayer for Mechanically Robust, Dendrite-free, and Ultrastable Solid-State Batteries. IScience, 2020, 23, 101636.	4.1	11
46	Packing State Management to Realize Dense and Semiconducting Lead Sulfide Nanocrystals Film via a Single-Step Deposition. Cell Reports Physical Science, 2020, 1, 100183.	5.6	11
47	Competitive Pi-Stacking and H-Bond Piling Increase Solubility of Heterocyclic Redoxmers. Journal of Physical Chemistry B, 2020, 124, 10409-10418.	2.6	10
48	Atomic Layer Deposition Overcoating Improves Catalyst Selectivity and Longevity in Propane Dehydrogenation. ACS Catalysis, 2020, 10, 13957-13967.	11.2	30
49	Competitive Self-Assembly of PANI Confined MoS ₂ Boosting the Photocatalytic Activity of the Graphitic Carbon Nitride. ACS Sustainable Chemistry and Engineering, 2020, 8, 13352-13361.	6.7	33
50	Engineering a hetero-MOF-derived TiO ₂ â€"Co ₃ O ₄ heterojunction decorated with nickel nanoparticles for enhanced photocatalytic activity even in pure water. CrystEngComm, 2020, 22, 5620-5627.	2.6	30
51	Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nature Energy, 2020, 5, 623-632.	39.5	393
52	Self-Assembled Solute Networks in Crowded Electrolyte Solutions and Nanoconfinement of Charged Redoxmer Molecules. Journal of Physical Chemistry B, 2020, 124, 10226-10236.	2.6	18
53	Pore-Edge Tailoring of Single-Atom Iron–Nitrogen Sites on Graphene for Enhanced CO ₂ Reduction. ACS Catalysis, 2020, 10, 10803-10811.	11.2	140
54	A large molecular cluster with high proton release capacity. Chemical Communications, 2020, 56, 12849-12852.	4.1	9

#	Article	IF	CITATIONS
55	Restorable Neutralization of Poly(acrylic acid) Binders toward Balanced Processing Properties and Cycling Performance for Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57932-57940.	8.0	19
56	Nickel/gallium modified HZSM-5 for ethane aromatization: Influence of metal function on reactivity and stability. Applied Catalysis A: General, 2020, 601, 117629.	4.3	21
57	Toward enhanced photocatalytic activity of graphite carbon nitride through rational design of noble metal-free dual cocatalysts. Nanoscale, 2020, 12, 13829-13837.	5.6	41
58	Large-scale synthesis of lithium- and manganese-rich materials with uniform thin-film Al2O3 coating for stable cathode cycling. Science China Materials, 2020, 63, 1683-1692.	6.3	23
59	Design Principles of Single Atoms on Carbons for Lithium–Sulfur Batteries. Small Methods, 2020, 4, 2000315.	8.6	84
60	Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries. Energy Storage Materials, 2020, 28, 196-204.	18.0	117
61	Unraveling the Effects of Cobalt on Crystal Growth and Solution Behavior of Nb6P2W12-based Dimeric Clusters. Inorganic Chemistry, 2020, 59, 6747-6754.	4.0	9
62	Synthesis and Characterization of Bio-Active GFP-P4VP Core–Shell Nanoparticles. Catalysts, 2020, 10, 627.	3.5	3
63	Broadband Tunable Mid-infrared Plasmon Resonances in Cadmium Oxide Nanocrystals Induced by Size-Dependent Nonstoichiometry. Nano Letters, 2020, 20, 2821-2828.	9.1	29
64	Modularly Constructed Polyhedral Oligomeric Silsesquioxane-Based Giant Molecules for Unconventional Nanostructure Fabrication. ACS Applied Nano Materials, 2020, 3, 2952-2958.	5.0	15
65	Two-way tuning of structural order in metallic glasses. Nature Communications, 2020, 11, 314.	12.8	29
66	Asymmetric Composition of Ionic Aggregates and the Origin of High Correlated Transference Number in Water-in-Salt Electrolytes. Journal of Physical Chemistry Letters, 2020, 11, 1276-1281.	4.6	57
67	Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping. ACS Catalysis, 2020, 10, 2452-2458.	11.2	103
68	2D Singleâ€Atom Catalyst with Optimized Iron Sites Produced by Thermal Melting of Metal–Organic Frameworks for Oxygen Reduction Reaction. Small Methods, 2020, 4, 1900827.	8.6	113
69	Unexpected electrochemical behavior of an anolyte redoxmer in flow battery electrolytes: solvating cations help to fight against the thermodynamic–kinetic dilemma. Journal of Materials Chemistry A, 2020, 8, 13470-13479.	10.3	17
70	Atomically Dispersed Iron–Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO ₂ Reduction. ACS Nano, 2020, 14, 5506-5516.	14.6	125
71	Atomically dispersed palladium catalyses Suzuki–Miyaura reactions under phosphine-free conditions. Communications Chemistry, 2020, 3, .	4.5	34
72	Fine-tuned order-order phase transitions in giant surfactants via interfacial engineering. Giant, 2020, 1, 100002.	5.1	17

#	Article	IF	CITATIONS
73	Binder-Free Electrodes and Their Application for Li-Ion Batteries. Nanoscale Research Letters, 2020, 15, 112.	5.7	62
74	Molecular Sieve-Modified Separator for High-Performance Lithium-Ion Batteries. Nanoscale Research Letters, 2020, 15, 107.	5.7	8
75	Binder-Free Electrode based on Electrospun-Fiber for Li Ion Batteries via a Simple Rolling Formation. Nanoscale Research Letters, 2020, 15, 147.	5.7	3
76	Distinctive Trend of Metal Binding Affinity via Hydration Shell Breakage in Nanoconfined Cavity. Journal of Physical Chemistry C, 2019, 123, 14825-14833.	3.1	15
77	Transition Kinetics of Self-Assembled Supramolecular Dodecagonal Quasicrystal and Frank–Kasper Ïf Phases in AB _{<i>n</i>, 8, 875-881.}	4.8	39
78	Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, 3, 2647-2661.	24.0	432
79	Ethane Aromatization over Zn-HZSM-5: Early-Stage Acidity/Performance Relationships and Deactivation Kinetics. Industrial & Engineering Chemistry Research, 2019, 58, 17699-17708.	3.7	28
80	Atomically Isolated Iron Atom Anchored on Carbon Nanotubes for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39820-39826.	8.0	49
81	Identification of a Frank–Kasper Z phase from shape amphiphile self-assembly. Nature Chemistry, 2019, 11, 899-905.	13.6	114
82	Hybrid VS ₂ cocatalyst and phosphorus dopant towards both surface and bulk modification of ZnCdS/CdS heterostructures. Catalysis Science and Technology, 2019, 9, 583-587.	4.1	27
83	Janus Electrocatalysts Containing MOF-Derived Carbon Networks and NiFe-LDH Nanoplates for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2019, 2, 1784-1792.	5.1	54
84	Sequence isomeric giant surfactants with distinct self-assembly behaviors in solution. Chemical Communications, 2019, 55, 636-639.	4.1	18
85	Boosting the hydrogen evolution performance of a ternary Mo _x Co _{1â^'x} P nanowire array by tuning the Mo/Co ratio. Journal of Materials Chemistry A, 2019, 7, 14842-14848.	10.3	36
86	Breaking Parallel Orientation of Rods via a Dendritic Architecture toward Diverse Supramolecular Structures. Angewandte Chemie - International Edition, 2019, 58, 11879-11885.	13.8	28
87	Breaking Parallel Orientation of Rods via a Dendritic Architecture toward Diverse Supramolecular Structures. Angewandte Chemie, 2019, 131, 12005-12011.	2.0	10
88	Insights into Structural Evolution of Lithium Peroxides with Reduced Charge Overpotential in Liâ^O ₂ System. Advanced Energy Materials, 2019, 9, 1900662.	19.5	38
89	Electrodeposited amorphous cobalt phosphosulfide on Ni foams for highly efficient overall water splitting. Journal of Power Sources, 2019, 431, 182-188.	7.8	54
90	Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. Journal of Materials Chemistry A, 2019, 7, 14478-14482.	10.3	56

#	Article	IF	Citations
91	Secondary-Atom-Assisted Synthesis of Single Iron Atoms Anchored on N-Doped Carbon Nanowires for Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 5929-5934.	11.2	149
92	High-performance TiO ₂ photocatalyst produced by the versatile functions of the tiny bimetallic MOF-derived NiCoS-porous carbon cocatalyst. CrystEngComm, 2019, 21, 3686-3693.	2.6	20
93	Foam–like Co9S8/Ni3S2 heterostructure nanowire arrays for efficient bifunctional overall water–splitting. Applied Catalysis B: Environmental, 2019, 253, 246-252.	20.2	138
94	MOF-Derived Carbon Networks with Atomically Dispersed Fe–N _{<i>x</i>} Sites for Oxygen Reduction Reaction Catalysis in Acidic Media. , 2019, 1, 37-43.		40
95	Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nature Communications, 2019, 10, 1394.	12.8	64
96	Conductive Ti ₃ C ₂ and MOF-derived CoS _x boosting the photocatalytic hydrogen production activity of TiO ₂ . CrystEngComm, 2019, 21, 2416-2421.	2.6	54
97	Preparation of an Fe ₂ Ni MOF on nickel foam as an efficient and stable electrocatalyst for the oxygen evolution reaction. RSC Advances, 2019, 9, 33558-33562.	3.6	40
98	Reduced-graphene-oxide-loaded MoS2‡Ni3S2 nanorod arrays on Ni foam as an efficient and stable electrocatalyst for the hydrogen evolution reaction. Electrochemistry Communications, 2019, 99, 22-26.	4.7	20
99	Communicationâ€"Microscopic View of the Ethylene Carbonate Based Lithium-Ion Battery Electrolyte by X-ray Scattering. Journal of the Electrochemical Society, 2019, 166, A47-A49.	2.9	21
100	Effect of Cation–π Interaction on Macroionic Selfâ€Assembly. Angewandte Chemie, 2018, 130, 4131-4136.	2.0	13
101	Engineering Singleâ€Atom Cobalt Catalysts toward Improved Electrocatalysis. Small, 2018, 14, e1704319.	10.0	97
102	Effect of Cation–π Interaction on Macroionic Selfâ€Assembly. Angewandte Chemie - International Edition, 2018, 57, 4067-4072.	13.8	37
103	Tailoring nanopore formation in atomic layer deposited ultrathin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	13
104	Tuning of Polyoxopalladate Macroanionic Hydration Shell via Countercation Interaction. Chemistry - A European Journal, 2018, 24, 3052-3057.	3.3	29
105	Hybrid network via instantaneous photoradiation: High efficient design of 100% bio-based thermosets with remoldable and recyclable capabilities after UV curing. Chemical Engineering Journal, 2018, 336, 54-63.	12.7	13
106	Enhanced Polymer Crystallinity in Mixed-Matrix Membranes Induced by Metal–Organic Framework Nanosheets for Efficient CO ₂ Capture. ACS Applied Materials & Diterfaces, 2018, 10, 43095-43103.	8.0	55
107	Tuning the Performance of Single-Atom Electrocatalysts: Support-Induced Structural Reconstruction. Chemistry of Materials, 2018, 30, 7494-7502.	6.7	24
108	Hydrogen bonding directed co-assembly of polyoxometalates and polymers to core–shell nanoparticles. Materials Chemistry Frontiers, 2018, 2, 2070-2075.	5.9	16

#	Article	IF	Citations
109	Multilevel Manipulation of Supramolecular Structures of Giant Molecules via Macromolecular Composition and Sequence. ACS Macro Letters, 2018, 7, 635-640.	4.8	31
110	Intrinsic counterclockwise hysteresis in Mn-doped Pb(Zr,Ti)O3 gated MoS2 field effect transistors. Materials Research Express, 2018, 5, 066308.	1.6	2
111	Expanding Interlayer Spacing of Hard Carbon by Natural K ⁺ Doping to Boost Na-lon Storage. ACS Applied Materials & amp; Interfaces, 2018, 10, 27030-27038.	8.0	93
112	Hierarchical Selfâ€Assembly of Supramolecular Coordination Polymers Using Giant Metal–Organic Nanocapsules as Building Blocks. Chemistry - A European Journal, 2018, 24, 14335-14340.	3.3	21
113	Effects of coating spherical iron oxide nanoparticles. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3621-3626.	2.4	8
114	Conjugated Ladder Polymers by a Cyclopentannulation Polymerization. Journal of the American Chemical Society, 2017, 139, 5801-5807.	13.7	96
115	Sequenceâ€Mandated, Distinct Assembly of Giant Molecules. Angewandte Chemie - International Edition, 2017, 56, 15014-15019.	13.8	57
116	Sequenceâ€Mandated, Distinct Assembly of Giant Molecules. Angewandte Chemie, 2017, 129, 15210-15215.	2.0	9
117	The Role of Repulsion in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2017, 139, 16528-16535.	13.7	31
118	Hierarchical Self-Organization of AB _{<i>n</i>} Dendron-like Molecules into a Supramolecular Lattice Sequence. ACS Central Science, 2017, 3, 860-867.	11.3	69
119	Anionâ€Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis. Advanced Materials, 2017, 29, 1703436.	21.0	58
120	Disordered 3 D Multiâ€layer Graphene Anode Material from CO ₂ for Sodiumâ€lon Batteries. ChemSusChem, 2016, 9, 1397-1402.	6.8	23
121	Insight into the Capacity Fading Mechanism of Amorphous Se ₂ S ₅ Confined in Micro/Mesoporous Carbon Matrix in Ether-Based Electrolytes. Nano Letters, 2016, 16, 2663-2673.	9.1	83
122	Lithium Assisted "Dissolution–Alloying―Synthesis of Nanoalloys from Individual Bulk Metals. Chemistry of Materials, 2016, 28, 2267-2277.	6.7	9
123	Small Angle X-ray Scattering for Nanoparticle Research. Chemical Reviews, 2016, 116, 11128-11180.	47.7	667
124	Substantially reinforcing plant oil-based materials via cycloaliphatic epoxy with double bond-bridged structure. Polymer, 2016, 107, 19-28.	3.8	6
125	Exploring Pore Formation of Atomic Layer-Deposited Overlayers by <i>in Situ</i> Small- and Wide-Angle X-ray Scattering. Chemistry of Materials, 2016, 28, 7082-7087.	6.7	21
126	Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters. Journal of the American Chemical Society, 2016, 138, 10623-10629.	13.7	31

#	Article	IF	Citations
127	Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design. Industrial & Design Chemistry Research, 2016, 55, 12590-12597.	3.7	32
128	Concerted Growth and Ordering of Cobalt Nanorod Arrays as Revealed by Tandem in Situ SAXS-XAS Studies. Journal of the American Chemical Society, 2016, 138, 8422-8431.	13.7	32
129	Supramolecular Elastomers. Particulate \hat{I}^2 -Sheet Nanocrystal-Reinforced Synthetic Elastic Networks. Macromolecules, 2016, 49, 2688-2697.	4.8	18
130	X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates. Journal of the American Chemical Society, 2016, 138, 2638-2643.	13.7	49
131	High Thermal Stability of La ₂ O ₃ - and CeO ₂ -Stabilized Tetragonal ZrO ₂ . Inorganic Chemistry, 2016, 55, 2413-2420.	4.0	18
132	Exploring the Effect of Surface Functionality on the Selfâ€Assembly of Polyoxopalladate Macroions. Chemistry - A European Journal, 2015, 21, 9048-9052.	3.3	25
133	Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Communications, 2015, 6, 6475.	12.8	66
134	Polyurethane foams based on crude glycerol-derived biopolyols: One-pot preparation of biopolyols with branched fatty acid ester chains and its effects on foam formation and properties. Polymer, 2014, 55, 6529-6538.	3.8	50
135	Fast and low voltage-driven solid-state electrochromics using 3-D conductive FTO nanobead electrodes. Journal of Materials Chemistry C, 2014, 2, 618-621.	5.5	23
136	Drift Transport in Al ₂ O ₃ -Sheathed 3-D Transparent Conducting Oxide Photoanodes Observed in Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9951-9957.	3.1	7
137	In situ diffraction of highly dispersed supported platinum nanoparticles. Catalysis Science and Technology, 2014, 4, 3053-3063.	4.1	42
138	Spontaneous Stepwise Selfâ€Assembly of a Polyoxometalate–Organic Hybrid into Catalytically Active Oneâ€Dimensional Anisotropic Structures. Chemistry - A European Journal, 2014, 20, 9589-9595.	3.3	67
139	In Situ Optical and Structural Studies on Photoluminesence Quenching in CdSe/CdS/Au Heterostructures. Journal of the American Chemical Society, 2014, 136, 2342-2350.	13.7	66
140	Transient viscoelasticity study of tobacco mosaic virus/Ba2+ superlattice. Nanoscale Research Letters, 2014, 9, 300.	5.7	5
141	Enhanced stability of cobalt catalysts by atomic layer deposition for aqueous-phase reactions. Energy and Environmental Science, 2014, 7, 1657.	30.8	109
142	Facile Co-Assembly Process to Generate Core–Shell Nanoparticles with Functional Protein Corona. Biomacromolecules, 2014, 15, 948-956.	5.4	41
143	Pore Structure and Bifunctional Catalyst Activity of Overlayers Applied by Atomic Layer Deposition on Copper Nanoparticles. ACS Catalysis, 2014, 4, 1554-1557.	11.2	58
144	Exploring the Programmable Assembly of a Polyoxometalate–Organic Hybrid via Metal Ion Coordination. Journal of the American Chemical Society, 2013, 135, 13425-13432.	13.7	78

#	Article	IF	Citations
145	{Mo ₂₄ Fe ₁₂ } Macrocycles: Anion Templation with Large Polyoxometalate Guests. Angewandte Chemie - International Edition, 2013, 52, 10500-10504.	13.8	54
146	Self-Assembly of Rodlike Virus to Superlattices. Langmuir, 2013, 29, 12777-12784.	3.5	15
147	Self-Recognition of Structurally Identical, Rod-Shaped Macroions with Different Central Metal Atoms during Their Assembly Process. Journal of the American Chemical Society, 2013, 135, 4529-4536.	13.7	54
148	Nanomechanical characterization of rod-like superlattice assembled from tobacco mosaic viruses. Journal of Applied Physics, 2013, 113, 024308.	2.5	4
149	Biomolecular Assembly of Thermoresponsive Superlattices of the Tobacco Mosaic Virus with Large Tunable Interparticle Distances. Angewandte Chemie - International Edition, 2013, 52, 6638-6642.	13.8	44
150	Three-dimensional conducting oxide nanoarchitectures: morphology-controllable synthesis, characterization, and applications in lithium-ion batteries. Nanoscale, 2013, 5, 6422.	5.6	17
151	Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. Journal of Membrane Science, 2013, 425-426, 235-242.	8.2	387
152	Facile Oxidative Conversion of TiH ₂ to High-Concentration Ti ³⁺ -Self-Doped Rutile TiO ₂ with Visible-Light Photoactivity. Inorganic Chemistry, 2013, 52, 3884-3890.	4.0	171
153	A Directional Entropic Force Approach to Assemble Anisotropic Nanoparticles into Superlattices. Angewandte Chemie - International Edition, 2013, 52, 13980-13984.	13.8	90
154	Highâ€Temperatureâ€Stable and Regenerable Catalysts: Platinum Nanoparticles in Aligned Mesoporous Silica Wells. ChemSusChem, 2013, 6, 1915-1922.	6.8	34
155	Synthesis and characterization of Au-core Ag-shell nanoparticles from unmodified apoferritin. Journal of Materials Chemistry, 2012, 22, 14458.	6.7	22
156	Enhanced Electron Extraction from Template-Free 3D Nanoparticulate Transparent Conducting Oxide (TCO) Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4419-4427.	8.0	46
157	Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. Journal of Membrane Science, 2012, 390-391, 93-98.	8.2	384
158	Superlattice of Rodlike Virus Particles Formed in Aqueous Solution through Like-Charge Attraction. Langmuir, 2011, 27, 10929-10937.	3.5	39
159	M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Research, 2011, 4, 483-493.	10.4	74
160	Synthesis and electron microscopic analysis of the selfâ€essembly of polymer and ferritin coreâ€shell structures. Microscopy Research and Technique, 2011, 74, 636-641.	2.2	5
161	Polymer-virus core-shell structures prepared via co-assembly and template synthesis methods. Science China Chemistry, 2010, 53, 71-77.	8.2	15
162	Interfacial Assembly of Turnip Yellow Mosaic Virus Nanoparticles. Langmuir, 2009, 25, 5168-5176.	3.5	65

#	Article	IF	CITATION
163	Controlled assembly of rodlike viruses with polymers. Chemical Communications, 2009, , 2869.	4.1	40
164	Closed-Packed Colloidal Assemblies from Icosahedral Plant Virus and Polymer. Chemistry of Materials, 2009, 21, 1046-1050.	6.7	50
165	High Resolution TEM Imaging and Analysis of the Core-Shell Assembly of Ferritin-Poly 4-Vinyl Pyridine (P4VP). Microscopy and Microanalysis, 2009, 15, 96-97.	0.4	1
166	Core/Shell Biocomposites from the Hierarchical Assembly of Bionanoparticles and Polymer. Small, 2008, 4, 1624-1629.	10.0	48
167	Chemoselective derivatization of a bionanoparticle by click reaction and ATRP reaction. Chemical Communications, 2007, , 1453.	4.1	77
168	Injection-Molded Solid and Microcellular Polylactide and Polylactide Nanocomposites. Journal of Biobased Materials and Bioenergy, 2007, $1,37-45$.	0.3	37
169	Phase equilibria of polymer dispersed liquid crystal systems in the presence of an external electrical field. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1898-1906.	2.1	4
170	Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer, 2006, 47, 4485-4489.	3.8	94
171	Nonisothermal crystallization kinetics and morphology of self-seeded syndiotactic 1,2-polybutadiene. Journal of Applied Polymer Science, 2006, 100, 1479-1491.	2.6	17
172	Properties of polyurethane–polystyrene graft copolymer membranes used for separating water–ethanol mixtures. European Polymer Journal, 2005, 41, 1090-1096.	5.4	18
173	Effect of external electrical field on phase behavior and morphology development of polymer dispersed liquid crystal. European Polymer Journal, 2004, 40, 1823-1832.	5.4	16
174	Anomalous Selfâ€Optimizing Microporous Grapheneâ€Based Lithiumâ€ion Battery Anode from Laser Activation of Small Organic Molecules. Small Methods, 0, , 2200280.	8.6	2