List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2171336/publications.pdf Version: 2024-02-01

FLIEN R COLDMAN

#	Article	IF	CITATIONS
1	Bivalent single domain antibody constructs for effective neutralization of Venezuelan equine encephalitis. Scientific Reports, 2022, 12, 700.	3.3	2
2	Stabilization of a Broadly Neutralizing Anti-Chikungunya Virus Single Domain Antibody. Frontiers in Medicine, 2021, 8, 626028.	2.6	8
3	Single-Domain Antibodies for the Detection of SARS-CoV-2 Nucleocapsid Protein. Analytical Chemistry, 2021, 93, 7283-7291.	6.5	30
4	Förster Resonance Energy Transfer in Linear DNA Multifluorophore Photonic Wires: Comparing Dual versus Split Rail Building Block Designs. Advanced Optical Materials, 2021, 9, 2100884.	7.3	5
5	Understanding Förster Resonance Energy Transfer in the Sheet Regime with DNA Brick-Based Dye Networks. ACS Nano, 2021, 15, 16452-16468.	14.6	14
6	High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Scientific Reports, 2020, 10, 22370.	3.3	95
7	Selection and Characterization of Single-Domain Antibodies for Detection of Lassa Nucleoprotein. Antibodies, 2020, 9, 71.	2.5	3
8	Lipid-tagged single domain antibodies for improved enzyme-linked immunosorbent assays. Journal of Immunological Methods, 2020, 481-482, 112790.	1.4	3
9	Multi-Enzyme Assembly on T4 Phage Scaffold. Frontiers in Bioengineering and Biotechnology, 2020, 8, 571.	4.1	14
10	Chemical Mapping of Unstained DNA Origami Using STEM/EDS and Graphene Supports. ACS Applied Nano Materials, 2020, 3, 1123-1130.	5.0	7
11	Oriented Immobilization of Single-Domain Antibodies Using SpyTag/SpyCatcher Yields Improved Limits of Detection. Analytical Chemistry, 2019, 91, 9424-9429.	6.5	54
12	Experimental evaluation of singleâ€domain antibodies predicted by molecular dynamics simulations to have elevated thermal stability. Protein Science, 2019, 28, 1909-1912.	7.6	9
13	Sequence Tolerance of a Single-Domain Antibody with a High Thermal Stability: Comparison of Computational and Experimental Fitness Profiles. ACS Omega, 2019, 4, 10444-10454.	3.5	4
14	Transducing Protease Activity into DNA Output for Developing Smart Bionanosensors. Small, 2019, 15, 1805384.	10.0	16
15	Selection and characterization of protective anti-chikungunya virus single domain antibodies. Molecular Immunology, 2019, 105, 190-197.	2.2	23
16	Restriction Enzymes as a Target for DNA-Based Sensing and Structural Rearrangement. ACS Omega, 2018, 3, 495-502.	3.5	15
17	Resonance Energy Transfer: Utilizing HomoFRET to Extend DNAâ€Scaffolded Photonic Networks and Increase Lightâ€Harvesting Capability (Advanced Optical Materials 1/2018). Advanced Optical Materials, 2018, 6, 1870005.	7.3	1
18	Orthogonal Synthetic Zippers as Protein Scaffolds. ACS Omega, 2018, 3, 4810-4815.	3.5	13

#	Article	IF	CITATIONS
19	Utilizing HomoFRET to Extend DNAâ€Scaffolded Photonic Networks and Increase Lightâ€Harvesting Capability. Advanced Optical Materials, 2018, 6, 1700679.	7.3	44
20	Selection of Single-Domain Antibodies towards Western Equine Encephalitis Virus. Antibodies, 2018, 7, 44.	2.5	9
21	Aberration-Corrected Scanning Transmission Electron Microscopy and Energy-Dispersive Spectral Maps of DNA Origami Triangles Using Graphene Supports. Microscopy and Microanalysis, 2018, 24, 386-387.	0.4	2
22	Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports, 2018, 8, 18086.	3.3	19
23	Genetic Fusion of an Anti-BclA Single-Domain Antibody with Beta Galactosidase. Antibodies, 2018, 7, 36.	2.5	8
24	Label free checkerboard assay to determine overlapping epitopes of Ebola virus VP-40 antibodies using surface plasmon resonance. Journal of Immunological Methods, 2017, 442, 42-48.	1.4	10
25	Improved production of single domain antibodies with two disulfide bonds by co-expression of chaperone proteins in the Escherichia coli periplasm. Journal of Immunological Methods, 2017, 443, 64-67.	1.4	24
26	Thermal stabilization of anti-Î \pm -cobratoxin single domain antibodies. Toxicon, 2017, 129, 68-73.	1.6	17
27	Evaluation of anti-botulinum neurotoxin single domain antibodies with additional optimization for improved production and stability. Toxicon, 2017, 135, 51-58.	1.6	23
28	Stability of isolated antibody-antigen complexes as a predictive tool for selecting toxin neutralizing antibodies. MAbs, 2017, 9, 43-57.	5.2	16
29	Bglbrick strategy for the construction of single domain antibody fusions. Heliyon, 2017, 3, e00474.	3.2	10
30	Improving biosensing activity to carcinoembryonic antigen with orientated single domain antibodies. Heliyon, 2017, 3, e00478.	3.2	9
31	Pairing Alpaca and Llama-Derived Single Domain Antibodies to Enhance Immunoassays for Ricin. Antibodies, 2017, 6, 3.	2.5	6
32	Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview. Frontiers in Immunology, 2017, 8, 865.	4.8	68
33	Selection, characterization, and thermal stabilization of llama single domain antibodies towards Ebola virus glycoprotein. Microbial Cell Factories, 2017, 16, 223.	4.0	24
34	Dendrimeric DNA Nanostructures as Scaffolds for Efficient Bidirectional BRET–FRET Cascades. Advanced Optical Materials, 2017, 5, 1700181.	7.3	27
35	Integrating scFv into xMAP Assays for the Detection of Marine Toxins. Toxins, 2016, 8, 346.	3.4	7
36	Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein. PLoS ONE, 2016, 11, e0160534.	2.5	11

#	Article	IF	CITATIONS
37	Extending DNAâ€Based Molecular Photonic Wires with Homogeneous Förster Resonance Energy Transfer. Advanced Optical Materials, 2016, 4, 399-412.	7.3	43
38	Expanding molecular logic capabilities in DNA-scaffolded multiFRET triads. RSC Advances, 2016, 6, 97587-97598.	3.6	23
39	Conjugation of biotin-coated luminescent quantum dots with single domain antibody-rhizavidin fusions. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 56-65.	4.4	16
40	Selection and characterization of single domain antibodies against human CD20. Molecular Immunology, 2016, 78, 146-154.	2.2	3
41	Comparison of Replica Exchange Simulations of a Kinetically Trapped Protein Conformational State and its Native Form. Journal of Physical Chemistry B, 2016, 120, 2234-2240.	2.6	3
42	FRET from Multiple Pathways in Fluorophore-Labeled DNA. ACS Photonics, 2016, 3, 659-669.	6.6	63
43	Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates. PLoS ONE, 2016, 11, e0149393.	2.5	30
44	Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond. Microbial Cell Factories, 2015, 14, 158.	4.0	37
45	Ultrasensitive Detection of Ricin Toxin in Multiple Sample Matrixes Using Single-Domain Antibodies. Analytical Chemistry, 2015, 87, 6570-6577.	6.5	45
46	Improving the biophysical properties of anti-ricin single-domain antibodies. Biotechnology Reports (Amsterdam, Netherlands), 2015, 6, 27-35.	4.4	35
47	Optimizing Nanoplasmonic Biosensor Sensitivity with Orientated Single Domain Antibodies. Plasmonics, 2015, 10, 1649-1655.	3.4	15
48	Can template-based protein models guide the design of sequence fitness for enhanced thermal stability of single domain antibodies?. Protein Engineering, Design and Selection, 2015, 28, 395-402.	2.1	7
49	Evaluation of Disulfide Bond Position to Enhance the Thermal Stability of a Highly Stable Single Domain Antibody. PLoS ONE, 2014, 9, e115405.	2.5	43
50	Assembling programmable FRET-based photonic networks using designer DNA scaffolds. Nature Communications, 2014, 5, 5615.	12.8	142
51	Isolation and Epitope Mapping of Staphylococcal Enterotoxin B Single-Domain Antibodies. Sensors, 2014, 14, 10846-10863.	3.8	10
52	Resonance Energy Transfer in DNA Duplexes Labeled with Localized Dyes. Journal of Physical Chemistry B, 2014, 118, 14555-14565.	2.6	55
53	Thermostable single domain antibody–maltose binding protein fusion for Bacillus anthracis spore protein BclA detection. Analytical Biochemistry, 2014, 447, 64-73.	2.4	22
54	Thermal stability and refolding capability of shark derived single domain antibodies. Molecular Immunology, 2014, 59, 194-199.	2.2	41

#	Article	IF	CITATIONS
55	Enhanced stabilization of a stable single domain antibody for SEB toxin by random mutagenesis and stringent selection. Protein Engineering, Design and Selection, 2014, 27, 89-95.	2.1	34
56	Negative tail fusions can improve ruggedness of single domain antibodies. Protein Expression and Purification, 2014, 95, 226-232.	1.3	22
57	Phage-Displayed Single Domain Antibodies as Recognition Elements. Methods in Molecular Biology, 2014, 1108, 201-210.	0.9	1
58	A triangular three-dye DNA switch capable of reconfigurable molecular logic. RSC Advances, 2014, 4, 48860-48871.	3.6	35
59	Bioconjugates of rhizavidin with single domain antibodies as bifunctional immunoreagents. Journal of Immunological Methods, 2014, 411, 37-42.	1.4	22
60	Development and Evaluation of Single Domain Antibodies for Vaccinia and the L1 Antigen. PLoS ONE, 2014, 9, e106263.	2.5	23
61	Achieving Effective Terminal Exciton Delivery in Quantum Dot Antenna-Sensitized Multistep DNA Photonic Wires. ACS Nano, 2013, 7, 7101-7118.	14.6	61
62	TEM imaging of unstained DNA nanostructures using suspended graphene. Soft Matter, 2013, 9, 1414-1417.	2.7	15
63	Single domain antibody–alkaline phosphatase fusion proteins for antigen detection — Analysis of affinity and thermal stability of single domain antibody. Journal of Immunological Methods, 2013, 393, 1-7.	1.4	33
64	Single domain antibody–quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance. Analytica Chimica Acta, 2013, 786, 132-138.	5.4	58
65	Structure of a low-melting-temperature anti-cholera toxin: llama VHH domain. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 90-93.	0.7	6
66	Comparison of single domain antibody immobilization strategies evaluated by surface plasmon resonance. Journal of Immunological Methods, 2013, 388, 68-77.	1.4	30
67	SdAb heterodimer formation using leucine zippers. , 2013, , .		3
68	Selection and evaluation of single domain antibodies toward MS2 phage and coat protein. Molecular Immunology, 2013, 53, 118-125.	2.2	19
69	Comparison of an antibody and its recombinant derivative for the detection of the small molecule explosive 2,4,6-trinitrotoluene. Analytica Chimica Acta, 2013, 759, 100-104.	5.4	20
70	Optimizing Protein Coordination to Quantum Dots with Designer Peptidyl Linkers. Bioconjugate Chemistry, 2013, 24, 269-281.	3.6	45
71	Selection and Characterization of Single Domain Antibodies Specific for Bacillus anthracis Spore Proteins. Antibodies, 2013, 2, 152-167.	2.5	13
72	Contributions of the Complementarity Determining Regions to the Thermal Stability of a Single-Domain Antibody. PLoS ONE, 2013, 8, e77678.	2.5	33

#	Article	IF	CITATIONS
73	Comparison of Immunoreactivity of Staphylococcal Enterotoxin B Mutants for Use as Toxin Surrogates. Analytical Chemistry, 2012, 84, 5198-5203.	6.5	14
74	Rugged Single Domain Antibody Detection Elements for Bacillus anthracis Spores and Vegetative Cells. PLoS ONE, 2012, 7, e32801.	2.5	40
75	Linking Single Domain Antibodies that Recognize Different Epitopes on the Same Target. Biosensors, 2012, 2, 43-56.	4.7	17
76	Evaluation of anti-hemagglutinin Hn-33 single domain antibodies: kinetics, binding epitopes, and thermal stability. Botulinum Journal, 2011, 2, 59.	0.2	1
77	Immunodiagnostic reagents using llama single domain antibody–alkaline phosphatase fusion proteins. Analytical Biochemistry, 2011, 417, 188-194.	2.4	35
78	Isolation of a Highly Thermal Stable Lama Single Domain Antibody Specific for Staphylococcus aureusEnterotoxin B. BMC Biotechnology, 2011, 11, 86.	3.3	38
79	Llama-Derived Single Domain Antibodies Specific for Abrus Agglutinin. Toxins, 2011, 3, 1405-1419.	3.4	22
80	Using llama derived single domain antibodies to target botulinum neurotoxins. Proceedings of SPIE, 2010, , .	0.8	0
81	Llama-derived single-domain antibodies for the detection of botulinum A neurotoxin. Analytical and Bioanalytical Chemistry, 2010, 398, 339-348.	3.7	29
82	Amplification of immunoassays using phage-displayed single domain antibodies. Journal of Immunological Methods, 2010, 352, 182-185.	1.4	25
83	Single domain antibody templated nanoparticle resistors for sensing. Biosensors and Bioelectronics, 2010, 25, 1908-1913.	10.1	14
84	Binding Kinetics of Antiricin Single Domain Antibodies and Improved Detection Using a B Chain Specific Binder. Analytical Chemistry, 2010, 82, 7202-7207.	6.5	45
85	Bead-Based Fluid Array Detection of Pentaerythritol Tetranitrate: Comparison of Monoclonal vs. Llama Polyclonal Antibodies. Analytical Letters, 2010, 43, 2913-2922.	1.8	9
86	Ricin Detection Using Phage Displayed Single Domain Antibodies. Sensors, 2009, 9, 542-555.	3.8	33
87	TNT detection using llama antibodies and a two-step competitive fluid array immunoassay. Journal of Immunological Methods, 2008, 339, 47-54.	1.4	46
88	Thermostable Llama Single Domain Antibodies for Detection of Botulinum A Neurotoxin Complex. Analytical Chemistry, 2008, 80, 8583-8591.	6.5	49
89	Development of Antiricin Single Domain Antibodies Toward Detection and Therapeutic Reagents. Analytical Chemistry, 2008, 80, 9604-9611.	6.5	58
90	Evaluation of llama anti-botulinum toxin Heavy chain Antibody. Botulinum Journal, 2008, 1, 100.	0.2	10

#	Article	IF	CITATIONS
91	Monitoring of Enzymatic Proteolysis Using Self-Assembled Quantum Dot-Protein Substrate Sensors. Journal of Sensors, 2008, 2008, 1-10.	1.1	10
92	SINGLE-DOMAIN ANTIBODIES: RUGGED RECOGNITION ELEMENTS FOR TOMORROW'S BIOSENSORS. , 2008, , 469-492.		3
93	Luminescent Biocompatible Quantum Dots: A Tool for Immunosorbent Assay Design. , 2007, 374, 207-228.		6
94	Selection of cholera toxin specific IgNAR single-domain antibodies from a naÃ⁻ve shark library. Molecular Immunology, 2007, 44, 1775-1783.	2.2	104
95	Multiplexed fluid array screening of phage displayed anti-ricin single domain antibodies for rapid assessment of specificity. BioTechniques, 2007, 43, 806-811.	1.8	22
96	Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library. BMC Biotechnology, 2007, 7, 78.	3.3	53
97	TNT Detection Using Multiplexed Liquid Array Displacement Immunoassays. Analytical Chemistry, 2006, 78, 2279-2285.	6.5	86
98	Facile Generation of Heat-Stable Antiviral and Antitoxin Single Domain Antibodies from a Semisynthetic Llama Library. Analytical Chemistry, 2006, 78, 8245-8255.	6.5	169
99	Luminescent quantum dots in immunoassays. Analytical and Bioanalytical Chemistry, 2006, 384, 560-563.	3.7	106
100	Self-assembled luminescent CdSe–ZnS quantum dot bioconjugates prepared using engineered poly-histidine terminated proteins. Analytica Chimica Acta, 2005, 534, 63-67.	5.4	96
101	Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 2005, 4, 435-446.	27.5	5,774
102	Application of a Homogenous Assay for the Detection of 2,4,6-Trinitrotoluene to Environmental Water Samples. Scientific World Journal, The, 2005, 5, 446-451.	2.1	7
103	Fluoroimmunoassays Using Antibody-Conjugated Quantum Dots. , 2005, 303, 019-034.		30
104	A Hybrid Quantum Dotâ^'Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor. Journal of the American Chemical Society, 2005, 127, 6744-6751.	13.7	562
105	Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents. Analytical Chemistry, 2004, 76, 684-688.	6.5	652
106	Detection of proteins cross-linked within galactoside polyacrylate-based hydrogels by means of a quantum dot fluororeagent. Analytical and Bioanalytical Chemistry, 2004, 380, 880-886.	3.7	20
107	Analysis of aqueous 2,4,6-trinitrotoluene (TNT) using a fluorescent displacement immunoassay. Analytical and Bioanalytical Chemistry, 2003, 375, 471-475.	3.7	55
108	Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials, 2003, 2, 630-638.	27.5	1,541

#	Article	IF	CITATIONS
109	Detection of 2,4,6-Trinitrotoluene in Environmental Samples Using a Homogeneous Fluoroimmunoassay. Environmental Science & Technology, 2003, 37, 4733-4736.	10.0	31
110	2,4,6-Trinitrotoluene detection using recombinant antibodies. Journal of Environmental Monitoring, 2003, 5, 380.	2.1	40
111	Towards the Design and Implementation of Surface Tethered Quantum Dot-Based Nanosensors. Materials Research Society Symposia Proceedings, 2003, 789, 306.	0.1	0
112	Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein To Provide New Reagents for Fluoroimmunoassays. Analytical Chemistry, 2002, 74, 841-847.	6.5	430
113	Avidin:  A Natural Bridge for Quantum Dot-Antibody Conjugates. Journal of the American Chemical Society, 2002, 124, 6378-6382.	13.7	518
114	Self-Assembly of CdSeâ^'ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. Journal of the American Chemical Society, 2000, 122, 12142-12150.	13.7	1,675