
Bassem A Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2171211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Slit/Robo Signaling Regulates Multiple Stages of the Development of the Drosophila Motion Detection System. Frontiers in Cell and Developmental Biology, 2021, 9, 612645.	3.7	1
2	Generation of excitatory and inhibitory neurons from common progenitors via Notch signaling in the cerebellum. Cell Reports, 2021, 35, 109208.	6.4	18
3	Notch1 switches progenitor competence in inducing medulloblastoma. Science Advances, 2021, 7, .	10.3	6
4	The amyloid precursor protein is a conserved Wnt receptor. ELife, 2021, 10, .	6.0	22
5	Induction of granule and Purkinje cells from primary cultured mouse cerebellar progenitors. STAR Protocols, 2021, 2, 100760.	1.2	0
6	Brain connectivity inversely scales with developmental temperature in Drosophila. Cell Reports, 2021, 37, 110145.	6.4	27
7	Slit neuronal secretion coordinates optic lobe morphogenesis in Drosophila. Developmental Biology, 2020, 458, 32-42.	2.0	10
8	A neurodevelopmental origin of behavioral individuality in the <i>Drosophila</i> visual system. Science, 2020, 367, 1112-1119.	12.6	97
9	Autophagy-dependent filopodial kinetics restrict synaptic partner choice during Drosophila brain wiring. Nature Communications, 2020, 11, 1325.	12.8	31
10	The Drosophila amyloid precursor protein homologue mediates neuronal survival and neuroglial interactions. PLoS Biology, 2020, 18, e3000703.	5.6	10
11	Title is missing!. , 2020, 18, e3000703.		0
12	Title is missing!. , 2020, 18, e3000703.		0
13	Title is missing!. , 2020, 18, e3000703.		0
14	Title is missing!. , 2020, 18, e3000703.		0
15	Title is missing!. , 2020, 18, e3000703.		0
16	Title is missing!. , 2020, 18, e3000703.		0
17	Altering the Temporal Regulation of One Transcription Factor Drives Evolutionary Trade-Offs between Head Sensory Organs. Developmental Cell, 2019, 50, 780-792.e7.	7.0	34
18	A neuroscientific approach to increase gender equality. Nature Human Behaviour, 2019, 3, 1238-1239.	12.0	4

#	Article	IF	CITATIONS
19	A Temporal Transcriptional Switch Governs Stem Cell Division, Neuronal Numbers, and Maintenance of Differentiation. Developmental Cell, 2018, 45, 53-66.e5.	7.0	35
20	A simple computer vision pipeline reveals the effects of isolation on social interaction dynamics in Drosophila. PLoS Computational Biology, 2018, 14, e1006410.	3.2	20
21	p27Kip1 Modulates Axonal Transport by Regulating α-Tubulin Acetyltransferase 1 Stability. Cell Reports, 2018, 23, 2429-2442.	6.4	30
22	The CCR4-NOT complex is a tumor suppressor in Drosophila melanogaster eye cancer models. Journal of Hematology and Oncology, 2018, 11, 108.	17.0	15
23	Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8246-E8255.	7.1	81
24	The Evolution of Variability and Robustness in Neural Development. Trends in Neurosciences, 2018, 41, 577-586.	8.6	54
25	Reduced Lateral Inhibition Impairs Olfactory Computations and Behaviors in a Drosophila Model of Fragile X Syndrome. Current Biology, 2017, 27, 1111-1123.	3.9	37
26	Beyond proneural: emerging functions and regulations of proneural proteins. Current Opinion in Neurobiology, 2017, 42, 93-101.	4.2	80
27	Building Bridges through Science. Neuron, 2017, 96, 730-735.	8.1	2
28	Receptor Tyrosine Kinases and Phosphatases in Neuronal Wiring. Current Topics in Developmental Biology, 2017, 123, 399-432.	2.2	4
29	A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury. Frontiers in Cellular Neuroscience, 2017, 11, 416.	3.7	23
30	Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1. Frontiers in Molecular Neuroscience, 2017, 10, 445.	2.9	7
31	Evolutionary changes in transcription factor coding sequence quantitatively alter sensory organ development and function. ELife, 2017, 6, .	6.0	25
32	The <i>Drosophila</i> Neurogenin, Tap, functionally interacts with the Wnt-PCP pathway to regulate neuronal extension and guidance. Development (Cambridge), 2016, 143, 2760-6.	2.5	16
33	The I in Scientist. Cell, 2016, 166, 790-793.	28.9	0
34	Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex. Developmental Cell, 2016, 39, 267-278.	7.0	26
35	Post-translational Control of the Temporal Dynamics of Transcription Factor Activity Regulates Neurogenesis. Cell, 2016, 164, 460-475.	28.9	58
36	Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. ELife, 2016, 5, .	6.0	88

#	Article	IF	CITATIONS
37	A novel fragile X syndrome mutation reveals a conserved role for the carboxyâ€ŧerminus in <scp>FMRP</scp> localization and function. EMBO Molecular Medicine, 2015, 7, 423-437.	6.9	41
38	Hindsight regulates photoreceptor axon targeting through transcriptional control of <i>jitterbug/Filamin</i> and multiple genes involved in axon guidance in <scp><i>D</i></scp> rosophila. Developmental Neurobiology, 2015, 75, 1018-1032.	3.0	17
39	Beyond Molecular Codes: Simple Rules to Wire Complex Brains. Cell, 2015, 163, 285-291.	28.9	95
40	Filopodial dynamics and growth cone stabilization in Drosophila visual circuit development. ELife, 2015, 4, .	6.0	78
41	The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics. Genes, 2014, 5, 385-414.	2.4	9
42	Automated Social Behaviour Recognition at Low Resolution. , 2014, , .		1
43	Amyloid precursor protein and neural development. Development (Cambridge), 2014, 141, 2543-2548.	2.5	127
44	The Fungal Aroma Gene ATF1 Promotes Dispersal of Yeast Cells through Insect Vectors. Cell Reports, 2014, 9, 425-432.	6.4	163
45	Neurogenins in brain development and disease: An overview. Archives of Biochemistry and Biophysics, 2014, 558, 10-13.	3.0	25
46	Proper connectivity of Drosophila motion detector neurons requires Atonal function in progenitor cells. Neural Development, 2014, 9, 4.	2.4	21
47	Beyond pathology: APP, brain development and Alzheimer's disease. Current Opinion in Neurobiology, 2014, 27, 61-67.	4.2	41
48	Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling. ELife, 2014, 3, e01699.	6.0	36
49	Genetic approaches in Drosophila for the study neurodevelopmental disorders. Neuropharmacology, 2013, 68, 150-156.	4.1	7
50	Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nature Genetics, 2013, 45, 186-190.	21.4	365
51	The Drosophila Homologue of the Amyloid Precursor Protein Is a Conserved Modulator of Wnt PCP Signaling. PLoS Biology, 2013, 11, e1001562.	5.6	71
52	APLP2 regulates neuronal stem cell differentiation during cortical development. Journal of Cell Science, 2013, 126, 1268-1277.	2.0	44
53	Ubiquitin Ligase HUWE1 Regulates Axon Branching through the Wnt/β-Catenin Pathway in a Drosophila Model for Intellectual Disability. PLoS ONE, 2013, 8, e81791.	2.5	23
54	Mutual inhibition among postmitotic neurons regulates robustness of brain wiring in Drosophila. ELife, 2013, 2, e00337.	6.0	36

#	Article	IF	CITATIONS
55	APLP2 regulates neuronal stem cell differentiation during cortical development. Development (Cambridge), 2013, 140, e1-e1.	2.5	0
56	Transcriptional Control of Cell Fate Specification. Current Topics in Developmental Biology, 2012, 98, 259-276.	2.2	18
57	Hamlet Notches fate. Nature Neuroscience, 2012, 15, 174-176.	14.8	1
58	Out with the Brain: Drosophila Whole-Brain Explant Culture. Neuromethods, 2012, , 261-268.	0.3	19
59	Genetically Encoded Markers for Drosophila Neuroanatomy. Neuromethods, 2012, , 49-59.	0.3	2
60	Drosophila syndecan regulates tracheal cell migration by stabilizing Robo levels. EMBO Reports, 2011, 12, 1039-1046.	4.5	9
61	Whole-genome prediction of <i>cis</i> -regulatory modules and target genes yields insight into gene regulatory networks underlying sensory differentiation. Fly, 2011, 5, 221-223.	1.7	1
62	<i>Drosophila</i> Amyloid Precursor Protein-Like Is Required for Long-Term Memory. Journal of Neuroscience, 2011, 31, 1032-1037.	3.6	38
63	Genetically encoded dendritic marker sheds light on neuronal connectivity in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20553-20558.	7.1	252
64	Robust Target Gene Discovery through Transcriptome Perturbations and Genome-Wide Enhancer Predictions in Drosophila Uncovers a Regulatory Basis for Sensory Specification. PLoS Biology, 2010, 8, e1000435.	5.6	88
65	Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors. Nature Communications, 2010, 1, 18.	12.8	119
66	The Basic Helixâ^'Loopâ^'Helix Region of Human Neurogenin 1 Is a Monomeric Natively Unfolded Protein Which Forms a "Fuzzy―Complex upon DNA Binding. Biochemistry, 2010, 49, 1577-1589.	2.5	36
67	A novel method for tissue-specific RNAi rescue in Drosophila. Nucleic Acids Research, 2009, 37, e93-e93.	14.5	22
68	Atonal homolog 1 Is a Tumor Suppressor Gene. PLoS Biology, 2009, 7, e1000039.	5.6	103
69	Integrating Computational Biology and Forward Genetics in Drosophila. PLoS Genetics, 2009, 5, e1000351.	3.5	27
70	The Atonal Proneural Transcription Factor Links Differentiation and Tumor Formation in Drosophila. PLoS Biology, 2009, 7, e1000040.	5.6	47
71	Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. Journal of Cell Biology, 2009, 187, 91-100.	5.2	240
72	Expression of the GABAergic system in animal models for fragile X syndrome and fragile X associated tremor/ataxia syndrome (FXTAS). Brain Research, 2009, 1253, 176-183.	2.2	153

#	Article	IF	CITATIONS
73	Unraveling the protective effect of a Drosophila phosphatidylethanolamine-binding protein upon bacterial infection by means of proteomics. Developmental and Comparative Immunology, 2009, 33, 1186-1195.	2.3	24
74	Conditional Mutagenesis in <i>Drosophila</i> . Science, 2009, 324, 54-54.	12.6	51
75	Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. Journal of Experimental Medicine, 2009, 206, i26-i26.	8.5	0
76	<i>Xenopus BTBD6</i> and its <i>Drosophila</i> homologue <i>lute</i> are required for neuronal development. Developmental Dynamics, 2008, 237, 3352-3360.	1.8	15
77	Axonal Injury and Regeneration in the Adult Brain of Drosophila. Journal of Neuroscience, 2008, 28, 6010-6021.	3.6	109
78	Mutational Analysis Establishes a Critical Role for the N Terminus of Fragile X Mental Retardation Protein FMRP. Journal of Neuroscience, 2008, 28, 3221-3226.	3.6	25
79	Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation. Nucleic Acids Research, 2008, 36, e114-e114.	14.5	91
80	A fruitfly's guide to keeping the brain wired. EMBO Reports, 2007, 8, 46-50.	4.5	21
81	Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 2007, 450, 219-232.	27.8	573
82	Fine-Tuning Enhancer Models to Predict Transcriptional Targets across Multiple Genomes. PLoS ONE, 2007, 2, e1115.	2.5	34
83	lazaro Encodes a Lipid Phosphate Phosphohydrolase that Regulates Phosphatidylinositol Turnover during Drosophila Phototransduction. Neuron, 2006, 49, 533-546.	8.1	73
84	Gene prioritization through genomic data fusion. Nature Biotechnology, 2006, 24, 537-544.	17.5	787
85	Decreased expression of the GABAA receptor in fragile X syndrome. Brain Research, 2006, 1121, 238-245.	2.2	297
86	A Signaling Network for Patterning of Neuronal Connectivity in the Drosophila Brain. PLoS Biology, 2006, 4, e348.	5.6	58
87	Amyloid precursor protein promotes post-developmental neurite arborization in the Drosophila brain. EMBO Journal, 2005, 24, 2944-2955.	7.8	193
88	The Drosophila Fragile X Mental Retardation Protein Controls Actin Dynamics by Directly Regulating Profilin in the Brain. Current Biology, 2005, 15, 1156-1163.	3.9	133
89	From skin to nerve: flies, vertebrates and the first helix. Cellular and Molecular Life Sciences, 2005, 62, 2036-2049.	5.4	46
90	Genetics in the Age of Systems Biology. Cell, 2005, 123, 1173-1174.	28.9	21

#	Article	IF	CITATIONS
91	Evolution of neural precursor selection: functional divergence of proneural proteins. Development (Cambridge), 2004, 131, 1679-1689.	2.5	59
92	Drosophila Fragile X Protein, DFXR, Regulates Neuronal Morphology and Function in the Brain. Neuron, 2002, 34, 961-972.	8.1	215
93	Drosophila atonal Fully Rescues the Phenotype of Math1 Null Mice. Current Biology, 2002, 12, 1611-1616.	3.9	104
94	Proprioceptor Pathway Development Is Dependent on MATH1. Neuron, 2001, 30, 411-422.	8.1	280
95	A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Current Biology, 2001, 11, 295-307.	3.9	176
96	atonal Regulates Neurite Arborization but Does Not Act as a Proneural Gene in the Drosophila Brain. Neuron, 2000, 25, 549-561.	8.1	156
97	Doing the MATH: is the mouse a good model for fly development?. Genes and Development, 2000, 14, 1852-1865.	5.9	114
98	Math1: An Essential Gene for the Generation of Inner Ear Hair Cells. Science, 1999, 284, 1837-1841.	12.6	1,042
99	skittles, a Drosophila Phosphatidylinositol 4-Phosphate 5-Kinase, Is Required for Cell Viability, Germline Development and Bristle Morphology, But Not for Neurotransmitter Release. Genetics, 1998, 150, 1527-1537.	2.9	70
100	Prospero is a panneural transcription factor that modulates homeodomain protein activity. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10991-10996.	7.1	91
101	Daughterless is required for the expression of cell cycle genes in peripheral nervous system precursors ofDrosophila embryos. , 1997, 21, 117-122.		14
102	Regulatory interactions during early neurogenesis inDrosophila. Genesis, 1996, 18, 18-27.	2.1	22
103	Altering the Temporal Regulation of One Transcription Factor Drives Sensory Trade-Offs. SSRN Electronic Journal, 0, , .	0.4	0