Raik Grünberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2170788/publications.pdf

Version: 2024-02-01

32	1,573	15	29
papers	citations	h-index	g-index
33	33	33	2369
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	How to Find the Right RNA-Sensing CRISPR-Cas System for an In Vitro Application. Biosensors, 2022, 12, 53.	4.7	5
2	Efficient multi-gene expression in cell-free droplet microreactors. PLoS ONE, 2022, 17, e0260420.	2.5	5
3	Pathogen and Protein Detection using Organic Electronics. , 2022, , .		O
4	Conjugated Polymer based Electronics for Diagnostics in Physiological Media. , 2022, , .		0
5	Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nature Biomedical Engineering, 2021, 5, 666-677.	22.5	235
6	The Synthetic Biology Open Language (SBOL) Version 3: Simplified Data Exchange for Bioengineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1009.	4.1	40
7	Developing synthetic biology in Argentina: the Latin American TECNOx community as an alternative way for growth of the field. Critical Reviews in Biotechnology, 2020, 40, 357-364.	9.0	5
8	Synthetic biology open language (SBOL) version 3.0.0. Journal of Integrative Bioinformatics, 2020, 17, .	1.5	13
9	Synthetic Biology Open Language (SBOL) Version 2.3. Journal of Integrative Bioinformatics, 2019, 16, .	1.5	16
10	Methods for the recombinant expression of active tyrosine kinase domains: Guidelines and pitfalls. Methods in Enzymology, 2019, 621, 131-152.	1.0	8
11	Synthetic Biology Open Language (SBOL) Version 2.2.0. Journal of Integrative Bioinformatics, 2018, 15, .	1.5	20
12	Synthetic Biology Open Language Visual (SBOL Visual) Version 2.0. Journal of Integrative Bioinformatics, 2018, 15, .	1.5	21
13	SBOLme: a Repository of SBOL Parts for Metabolic Engineering. ACS Synthetic Biology, 2017, 6, 732-736.	3.8	5
14	A Visual Language for Protein Design. ACS Synthetic Biology, 2017, 6, 1120-1123.	3.8	2
15	Synthetic Biology Open Language (SBOL) Version 2.1.0. Journal of Integrative Bioinformatics, 2016, 13, .	1.5	11
16	Sharing Structure and Function in Biological Design with SBOL 2.0. ACS Synthetic Biology, 2016, 5, 498-506.	3.8	88
17	Synthetic Biology Open Language (SBOL) Version 2.1.0. Journal of Integrative Bioinformatics, 2016, 13, 291.	1.5	6
18	The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nature Biotechnology, 2014, 32, 545-550.	17.5	247

#	Article	IF	CITATIONS
19	Engineering of weak helper interactions for high-efficiency FRET probes. Nature Methods, 2013, 10, 1021-1027.	19.0	62
20	A Biobrick Library for Cloning Custom Eukaryotic Plasmids. PLoS ONE, 2011, 6, e23685.	2.5	15
21	SynBioWaveâ€"a real-time communication platform for molecular and synthetic biology. Bioinformatics, 2010, 26, 2782-2783.	4.1	7
22	Building blocks for protein interaction devices. Nucleic Acids Research, 2010, 38, 2645-2662.	14.5	28
23	Strategies for protein synthetic biology. Nucleic Acids Research, 2010, 38, 2663-2675.	14.5	99
24	Shelling the Voronoi interface of protein–protein complexes reveals patterns of residue conservation, dynamics, and composition. Proteins: Structure, Function and Bioinformatics, 2009, 76, 677-692.	2.6	45
25	Shelling the Voronoi interface of protein-protein complexes predicts residue activity and conservation. Nature Precedings, 2008, , .	0.1	0
26	Shelling the Voronoi interface of protein-protein complexes predicts residue activity and conservation. Nature Precedings, 2008, , .	0.1	2
27	Biskit A software platform for structural bioinformatics. Bioinformatics, 2007, 23, 769-770.	4.1	61
28	Flexibility and Conformational Entropy in Protein-Protein Binding. Structure, 2006, 14, 683-693.	3.3	132
29	Complementarity of Structure Ensembles in Protein-Protein Binding. Structure, 2004, 12, 2125-2136.	3.3	173
30	Pathways and Intermediates in Forced Unfolding of Spectrin Repeats. Structure, 2002, 10, 1085-1096.	3.3	75
31	Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Molecular Microbiology, 2000, 37, 1172-1185.	2.5	133
32	Peptide bond formation mediated by substrate mimetics. FEBS Journal, 2000, 267, 7024-7030.	0.2	13