
Mikhail V Matz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/217061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms and potential immune tradeoffs of accelerated coral growth induced by microfragmentation. PeerJ, 2022, 10, e13158.	2.0	4
2	Changes in gene body methylation do not correlate with changes in gene expression in Anthozoa or Hexapoda. BMC Genomics, 2022, 23, 234.	2.8	19
3	Coralâ€bleaching responses to climate change across biological scales. Global Change Biology, 2022, 28, 4229-4250.	9.5	44
4	Benchmarking DNA methylation assays in a reefâ€building coral. Molecular Ecology Resources, 2021, 21, 464-477.	4.8	12
5	Gene expression associated with disease resistance and long-term growth in a reef-building coral. Royal Society Open Science, 2021, 8, 210113.	2.4	10
6	Comparative neurotranscriptomics reveal widespread species differences associated with bonding. BMC Genomics, 2021, 22, 399.	2.8	7
7	Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. Molecular Ecology, 2021, 30, 3468-3484.	3.9	27
8	Shuffling between <i>Cladocopium</i> and <i>Durusdinium</i> extensively modifies the physiology of each symbiont without stressing the coral host. Molecular Ecology, 2021, 30, 6585-6595.	3.9	10
9	How mitonuclear discordance and geographic variation have confounded species boundaries in a widely studied snake. Molecular Phylogenetics and Evolution, 2021, 162, 107194.	2.7	21
10	Six priorities to advance the science and practice of coral reef restoration worldwide. Restoration Ecology, 2021, 29, e13498.	2.9	36
11	A 2b-RAD parentage analysis pipeline for complex and mixed DNA samples. Forensic Science International: Genetics, 2021, 55, 102590.	3.1	3
12	Population genetics of the coral <i>Acropora millepora</i> : Toward genomic prediction of bleaching. Science, 2020, 369, .	12.6	167
13	<i>Cladocopium</i> community divergence in two <i>Acropora</i> coral hosts across multiple spatial scales. Molecular Ecology, 2020, 29, 4559-4572.	3.9	21
14	Metaâ€analysis of the coral environmental stress response: <i>Acropora</i> corals show opposing responses depending on stress intensity. Molecular Ecology, 2020, 29, 2855-2870.	3.9	60
15	Molecular tools for coral reef restoration: Beyond biomarker discovery. Conservation Letters, 2020, 13, e12687.	5.7	44
16	Estimating the potential for coral adaptation to global warming across the Indoâ€West Pacific. Global Change Biology, 2020, 26, 3473-3481.	9.5	54
17	Positive genetic associations among fitness traits support evolvability of a reefâ€building coral under multiple stressors. Clobal Change Biology, 2019, 25, 3294-3304.	9.5	50
18	Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecological Applications, 2019, 29, e01978.	3.8	163

Mikhail V Matz

#	Article	IF	CITATIONS
19	Role of host genetics and heatâ€tolerant algal symbionts in sustaining populations of the endangered coral <i>Orbicella faveolata</i> in the Florida Keys with ocean warming. Global Change Biology, 2019, 25, 1016-1031.	9.5	111
20	Comparative transcriptomics of sympatric species of coral reef fishes (genus: Haemulon). PeerJ, 2019, 7, e6541.	2.0	6
21	Effects of thermal stress on amount, composition, and antibacterial properties of coral mucus. PeerJ, 2019, 7, e6849.	2.0	23
22	CRISPR/Cas9-mediated genome editing in a reef-building coral. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5235-5240.	7.1	110
23	Complex selection on a regulator of social cognition: Evidence of balancing selection, regulatory interactions and population differentiation in the prairie vole Avpr1a locus. Molecular Ecology, 2018, 27, 419-431.	3.9	3
24	Fantastic Beasts and How To Sequence Them: Ecological Genomics for Obscure Model Organisms. Trends in Genetics, 2018, 34, 121-132.	6.7	64
25	Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proceedings of the United States of America, 2018, 115, 13342-13346.	7.1	136
26	Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genetics, 2018, 14, e1007220.	3.5	184
27	Contrasting effects of <i>Symbiodinium</i> identity on coral host transcriptional profiles across latitudes. Molecular Ecology, 2018, 27, 3103-3115.	3.9	23
28	Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral. BMC Genomics, 2018, 19, 17.	2.8	39
29	Relationship between <i>Acropora millepora</i> juvenile fluorescence and composition of newly established <i>Symbiodinium</i> assemblage. PeerJ, 2018, 6, e5022.	2.0	5
30	Transcriptome dynamics over a lunar month in a broadcast spawning acroporid coral. Molecular Ecology, 2017, 26, 2514-2526.	3.9	32
31	Modeled differences of coral life-history traits influence the refugium potential of a remote Caribbean reef. Coral Reefs, 2017, 36, 913-925.	2.2	30
32	Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Scientific Reports, 2017, 7, 2609.	3.3	78
33	Population structure and connectivity of the mountainous star coral, <i>Orbicella faveolata</i> , throughout the wider Caribbean region. Ecology and Evolution, 2017, 7, 9234-9246.	1.9	49
34	Rapid adaptive responses to climate change in corals. Nature Climate Change, 2017, 7, 627-636.	18.8	327
35	Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nature Ecology and Evolution, 2017, 1, 14.	7.8	306
36	Coral larvae for restoration and research: a large-scale method for rearing <i>Acropora millepora</i> larvae, inducing settlement, and establishing symbiosis. PeerJ, 2017, 5, e3732.	2.0	67

#	Article	IF	CITATIONS
37	Variation in heat shock protein expression at the latitudinal range limits of a widelyâ€distributed species, the <scp>G</scp> lanville fritillary butterfly (<i><scp>M</scp>elitaea cinxia</i>). Physiological Entomology, 2016, 41, 241-248.	1.5	15
38	Evolutionary Consequences of DNA Methylation in a Basal Metazoan. Molecular Biology and Evolution, 2016, 33, 2285-2293.	8.9	57
39	Red fluorescence in coral larvae is associated with a diapauseâ€like state. Molecular Ecology, 2016, 25, 559-569.	3.9	28
40	Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral <i>Orbicella faveolata</i> (Cnidaria, Anthozoa). Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152128.	2.6	34
41	Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat. Royal Society Open Science, 2015, 2, 150358.	2.4	46
42	Fineâ€scale environmental specialization of reefâ€building corals might be limiting reef recovery in the Florida Keys. Ecology, 2015, 96, 3197-3212.	3.2	74
43	Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean. Molecular Ecology, 2015, 24, 70-82.	3.9	68
44	Estimating Trait Heritability in Highly Fecund Species. G3: Genes, Genomes, Genetics, 2015, 5, 2639-2645.	1.8	17
45	A Hinge Migration Mechanism Unlocks the Evolution of Green-to-Red Photoconversion in GFP-like Proteins. Structure, 2015, 23, 34-43.	3.3	58
46	Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. Heredity, 2015, 115, 509-516.	2.6	74
47	Genomic determinants of coral heat tolerance across latitudes. Science, 2015, 348, 1460-1462.	12.6	473
48	Quantitative high resolution melting: two methods to determine SNP allele frequencies from pooled samples. BMC Genetics, 2015, 16, 62.	2.7	14
49	Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics, 2015, 16, 371.	2.8	271
50	Deep-Sequencing Method for Quantifying Background Abundances of Symbiodinium Types: Exploring the Rare Symbiodinium Biosphere in Reef-Building Corals. PLoS ONE, 2014, 9, e94297.	2.5	135
51	Quantifying cryptic <i>Symbiodinium</i> diversity within <i>Orbicella faveolata</i> and <i>Orbicella franksi</i> at the Flower Garden Banks, Gulf of Mexico. PeerJ, 2014, 2, e386.	2.0	55
52	A cross-ocean comparison of responses to settlement cues in reef-building corals. PeerJ, 2014, 2, e333.	2.0	22
53	Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora millepora. BMC Genomics, 2014, 15, 1109.	2.8	89
54	Diagnostic gene expression biomarkers of coral thermal stress. Molecular Ecology Resources, 2014, 14, 667-678.	4.8	65

#	Article	IF	CITATIONS
55	Demystifying the <scp>RAD</scp> fad. Molecular Ecology, 2014, 23, 5937-5942.	3.9	199
56	So, you want to use next-generation sequencing in marine systems? Insight from the Pan-Pacific Advanced Studies Institute. Bulletin of Marine Science, 2014, 90, 79-122.	0.8	53
57	Novel polymorphic microsatellite markers for population genetics of the endangered Caribbean star coral, Montastraea faveolata. Marine Biodiversity, 2013, 43, 167-172.	1.0	47
58	Acid–Base Catalysis and Crystal Structures of a Least Evolved Ancestral GFP-like Protein Undergoing Green-to-Red Photoconversion. Biochemistry, 2013, 52, 8048-8059.	2.5	25
59	Deep relationships of Rhizaria revealed by phylogenomics: A farewell to Haeckel's Radiolaria. Molecular Phylogenetics and Evolution, 2013, 67, 53-59.	2.7	65
60	Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (<i><scp>P</scp>orites astreoides</i>) from different reef environments. Molecular Ecology, 2013, 22, 4335-4348.	3.9	158
61	Gene expression under chronic heat stress in populations of the mustard hill coral (<i><scp>P</scp>orites astreoides</i>) from different thermal environments. Molecular Ecology, 2013, 22, 4322-4334.	3.9	242
62	Gene Expression Signatures of Energetic Acclimatisation in the Reef Building Coral Acropora millepora. PLoS ONE, 2013, 8, e61736.	2.5	32
63	No Control Genes Required: Bayesian Analysis of qRT-PCR Data. PLoS ONE, 2013, 8, e71448.	2.5	137
64	Ecological Complexity of Coral Recruitment Processes: Effects of Invertebrate Herbivores on Coral Recruitment and Growth Depends Upon Substratum Properties and Coral Species. PLoS ONE, 2013, 8, e72830.	2.5	35
65	2b-RAD: a simple and flexible method for genome-wide genotyping. Nature Methods, 2012, 9, 808-810.	19.0	607
66	Multi-domain GFP-like proteins from two species of marine hydrozoans. Photochemical and Photobiological Sciences, 2012, 11, 637-644.	2.9	18
67	Multi-colored homologs of the green fluorescent protein from hydromedusa Obelia sp Photochemical and Photobiological Sciences, 2011, 10, 1303-1309.	2.9	14
68	Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Molecular Ecology, 2011, 20, no-no.	3.9	328
69	Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2691-2697.	2.6	53
70	Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment. PLoS ONE, 2011, 6, e20392.	2.5	114
71	Development of Gene Expression Markers of Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites. PLoS ONE, 2011, 6, e26914.	2.5	108
72	Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evolutionary Biology, 2010, 10, 377.	3.2	130

#	Article	IF	CITATIONS
73	Very Bright Green Fluorescent Proteins from the Pontellid Copepod Pontella mimocerami. PLoS ONE, 2010, 5, e11517.	2.5	30
74	Retracing Evolution of Red Fluorescence in GFP-Like Proteins from Faviina Corals. Molecular Biology and Evolution, 2010, 27, 225-233.	8.9	60
75	Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiological Reviews, 2010, 90, 1103-1163.	28.8	1,175
76	Characterization of a Group of MITEs with Unusual Features from Two Coral Genomes. PLoS ONE, 2010, 5, e10700.	2.5	14
77	Microsatellite Characterization and Marker Development from Public EST and WGS Databases in the Reef-Building Coral Acropora millepora (Cnidaria, Anthozoa, Scleractinia). Journal of Heredity, 2009, 100, 329-337.	2.4	42
78	Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics, 2009, 10, 219.	2.8	405
79	Construction of a high-resolution genetic linkage map and comparative genome analysis for the reef-building coral Acropora millepora. Genome Biology, 2009, 10, R126.	9.6	55
80	Genetic variation in responses to a settlement cue and elevated temperature in the reef-building coral Acropora millepora. Marine Ecology - Progress Series, 2009, 392, 81-92.	1.9	102
81	Giant Deep-Sea Protist Produces Bilaterian-like Traces. Current Biology, 2008, 18, 1849-1854.	3.9	72
82	A Green Fluorescent Protein with Photoswitchable Emission from the Deep Sea. PLoS ONE, 2008, 3, e3766.	2.5	32
83	Diversity and Evolution of Coral Fluorescent Proteins. PLoS ONE, 2008, 3, e2680.	2.5	281
84	Blue light regulation of host pigment in reef-building corals. Marine Ecology - Progress Series, 2008, 364, 97-106.	1.9	110
85	Fluorescence lifetime imaging of coral fluorescent proteins. Microscopy Research and Technique, 2007, 70, 243-251.	2.2	18
86	Contributions of host and symbiont pigments to the coloration of reef corals. FEBS Journal, 2007, 274, 1102-1122.	4.7	101
87	It's cheap to be colorful. FEBS Journal, 2007, 274, 2496-2505.	4.7	64
88	Dealing with model uncertainty in reconstructing ancestral proteins in the laboratory: examples from archosaur visual pigments and coralfluorescent proteins. , 2007, , 164-180.		2
89	Ordered Differential Display. , 2006, 317, 059-074.		0
90	Statistical Approaches for DNA Barcoding. Systematic Biology, 2006, 55, 162-169.	5.6	122

#	Article	IF	CITATIONS
91	BOOK REVIEW Aglow in the Dark: The Revolutionary Science of Biofluorescence. Oceanography, 2006, 19, 155-157.	1.0	0
92	Photoinduced activation of GFP-like proteins in tissues of reef corals. , 2006, 6098, 64.		2
93	Are Corals Colorful?. Photochemistry and Photobiology, 2006, 82, 345.	2.5	79
94	Adaptive Evolution of Multicolored Fluorescent Proteins in Reef-Building Corals. Journal of Molecular Evolution, 2006, 62, 332-339.	1.8	90
95	Discovery and properties of GFP-like proteins from nonbioluminescent anthozoa. Methods of Biochemical Analysis, 2006, 47, 121-38.	0.2	4
96	Evolution of Function and Color in GFP-Like Proteins. Methods of Biochemical Analysis, 2005, 47, 139-161.	0.2	12
97	A likelihood ratio test for species membership based on DNA sequence data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1969-1974.	4.0	86
98	Applications of Ancestral Protein Reconstruction in Understanding Protein Function: GFP-Like Proteins. Methods in Enzymology, 2005, 395, 652-670.	1.0	20
99	Discovery and Properties of GFP-Like Proteins from Nonbioluminescent Anthozoa. Methods of Biochemical Analysis, 2005, , 121-138.	0.2	6
100	GFP-like Proteins as Ubiquitous Metazoan Superfamily: Evolution of Functional Features and Structural Complexity. Molecular Biology and Evolution, 2004, 21, 841-850.	8.9	394
101	Evolution of Coral Pigments Recreated. Science, 2004, 305, 1433-1433.	12.6	144
102	Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Research, 2004, 32, 37e-37.	14.5	375
103	Amplification of cDNA Ends Using PCR Suppression Effect and Step-Out PCR. , 2003, 221, 41-50.		31
104	Molecular Basis and Evolutionary Origins of Color Diversity in Great Star Coral Montastraea cavernosa (Scleractinia: Faviida). Molecular Biology and Evolution, 2003, 20, 1125-1133.	8.9	102
105	Amplification of Representative cDNA Pools from Microscopic Amounts of Animal Tissue. , 2003, 221, 103-116.		21
106	Diversity and evolution of the green fluorescent protein family. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4256-4261.	7.1	340
107	Identification and characterization of a new family of C-type lectin-like genes from planaria Girardia tigrina. Glycobiology, 2002, 12, 463-472.	2.5	25
108	Amplification of Representative cDNA Samples from Microscopic Amounts of Invertebrate Tissue to Search for New Genes. , 2002, 183, 003-018.		32

#	Article	IF	CITATIONS
109	Family of the green fluorescent protein: Journey to the end of the rainbow. BioEssays, 2002, 24, 953-959.	2.5	131
110	Altering electrical connections in the nervous system of the pteropod molluscClione limacinaby neuronal injections of gap junction mRNA. European Journal of Neuroscience, 2002, 16, 2475-2476.	2.6	20
111	GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Letters, 2001, 507, 16-20.	2.8	240
112	Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 462-467.	7.1	422
113	NATURAL ANIMAL COLORATION CAN BE DETERMINED BY A NON-FLUORESCENT GFP HOMOLOG. , 2001, , .		1
114	A ubiquitous family of putative gap junction molecules. Current Biology, 2000, 10, R473-R474.	3.9	485
115	Natural Animal Coloration Can Be Determined by a Nonfluorescent Green Fluorescent Protein Homolog. Journal of Biological Chemistry, 2000, 275, 25879-25882.	3.4	300
116	Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Letters, 2000, 479, 127-130.	2.8	136
117	"Fluorescent Timer": Protein That Changes Color with Time. Science, 2000, 290, 1585-1588.	12.6	347
118	Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology, 1999, 17, 969-973.	17.5	1,711
119	Amplification of cDNA ends based on template-switching effect and step- out PCR. Nucleic Acids Research, 1999, 27, 1558-1560.	14.5	381
120	Regulation of average length of complex PCR product. Nucleic Acids Research, 1999, 27, 23e-23.	14.5	57
121	Sequence-Independent Method forin VitroGeneration of Nested Deletions for Sequencing Large DNA Fragments. Analytical Biochemistry, 1998, 258, 138-141.	2.4	5
122	Inductive Interactions Regulating Body Patterning in Planarian, Revealed by Analysis of Expression of Novel Genescarf. Developmental Biology, 1998, 194, 172-181.	2.0	22
123	Different strategies of differential display: areas of application. Nucleic Acids Research, 1998, 26, 5537-5543.	14.5	71
124	Ordered differential display: a simple method for systematic comparison of gene expression profiles. Nucleic Acids Research, 1997, 25, 2541-2542.	14.5	96
125	Construction of cDNA Libraries from Small Amounts of Total RNA Using the Suppression PCR Effect. Biochemical and Biophysical Research Communications, 1997, 230, 285-288.	2.1	44
126	Whole mount in situhybridization on freshwater planaria. Technical Tips Online, 1997, 2, 100-103.	0.2	0

#	Article	IF	CITATIONS
127	Molecule by molecule PCR amplification of complex DNA mixtures for direct sequencing: an approach to in vitro cloning. Nucleic Acids Research, 1996, 24, 2194-2195.	14.5	44
128	Primary structure of carboxypeptidase T: Delineation of functionally relevant features in Zn-carboxypeptidase family. The Protein Journal, 1992, 11, 561-570.	1.1	28
129	Crystal structure of carboxypeptidase T from Thermoactinomyces vulgaris. FEBS Journal, 1992, 208, 281-288.	0.2	65
130	Molecular cloning and primary structure of Thermoactinomyces vulgaris carboxypeptidase T A metalloenzyme endowed with dual substrate specificity. FEBS Letters, 1991, 291, 75-78.	2.8	27
131	Methods for Analysing mRNA Expression. , 0, , 163-407.		Ο
132	Novel fluorescent proteins: diversity, mutagenesis and applications. , 0, 2004, .		3