Bosl Noh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2170494/publications.pdf

Version: 2024-02-01

20 2,200 18
papers citations h-index

20 20 20 2914 all docs docs citations times ranked citing authors

20

g-index

#	Article	IF	CITATIONS
1	<i>Multidrug Resistance</i> àê"like Genes of Arabidopsis Required for Auxin Transport and Auxin-Mediated Development. Plant Cell, 2001, 13, 2441-2454.	6.6	462
2	Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature, 2003, 423, 999-1002.	27.8	253
3	Divergent Roles of a Pair of Homologous Jumonji/Zinc-Finger–Class Transcription Factor Proteins in the Regulation of Arabidopsis Flowering Time. Plant Cell, 2004, 16, 2601-2613.	6.6	246
4	HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acidâ€mediated defense responses in Arabidopsis. Plant Journal, 2012, 71, 135-146.	5.7	154
5	Resetting and regulation of <i>FLOWERING LOCUS C</i> expression during Arabidopsis reproductive development. Plant Journal, 2009, 57, 918-931.	5 . 7	144
6	Repression of FLOWERING LOCUS T Chromatin by Functionally Redundant Histone H3 Lysine 4 Demethylases in Arabidopsis. PLoS ONE, 2009, 4, e8033.	2.5	143
7	Control of Seed Germination by Light-Induced Histone Arginine Demethylation Activity. Developmental Cell, 2012, 22, 736-748.	7.0	128
8	Growth habit determination by the balance of histone methylation activities in Arabidopsis. EMBO Journal, 2010, 29, 3208-3215.	7.8	95
9	Epigenetic reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency acquisition in <i>Arabidopsis</i> <ir> <ir> <ir> <ir> <ir> <ir> <ir> <i< td=""><td>7.8</td><td>92</td></i<></ir></ir></ir></ir></ir></ir></ir>	7.8	92
10	Repression of flowering under a noninductive photoperiod by the <i><scp>HDA</scp>9</i> â€ <i><scp>AGL</scp>19</i> â€ <i><scp>FT</scp></i> module in Arabidopsis. New Phytologist, 2015, 206, 281-294.	7.3	88
11	Role of plant CBP/p300-like genes in the regulation of flowering time. Plant Journal, 2006, 49, 103-114.	5.7	87
12	Salicylic acid-induced transcriptional reprogramming by the HAC–NPR1–TGA histone acetyltransferase complex in Arabidopsis. Nucleic Acids Research, 2018, 46, 11712-11725.	14.5	59
13	Anion Channels and the Stimulation of Anthocyanin Accumulation by Blue Light in Arabidopsis Seedlings1. Plant Physiology, 1998, 116, 503-509.	4.8	51
14	Rhythmic Oscillation of Histone Acetylation and Methylation at the Arabidopsis Central Clock Loci. Molecules and Cells, 2012, 34, 279-288.	2.6	50
15	Epigenetic control of juvenileâ€toâ€adult phase transition by the Arabidopsis SAGAâ€like complex. Plant Journal, 2015, 83, 537-545.	5 . 7	41
16	EARLY FLOWERING 5acts as a floral repressor inArabidopsis. Plant Journal, 2004, 38, 664-672.	5.7	35
17	The RNA Binding Protein ELF9 Directly Reduces SUPPRESSOR OF OVEREXPRESSION OF CO1 Transcript Levels in Arabidopsis, Possibly via Nonsense-Mediated mRNA Decay. Plant Cell, 2009, 21, 1195-1211.	6.6	29
18	Temporal and Spatial Expression Patterns of Nine Arabidopsis Genes Encoding Jumonji C-Domain Proteins. Molecules and Cells, 2009, 27, 481-490.	2.6	26

#	Article	IF	CITATION
19	De Novo Shoot Regeneration Controlled by HEN1 and TCP3/4 in Arabidopsis. Plant and Cell Physiology, 2020, 61, 1600-1613.	3.1	15
20	Chromatin-mediated regulation of flowering time in Arabidopsis. Physiologia Plantarum, 2006, 126, 060307071539001-???.	5 . 2	2