Jose Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2169428/publications.pdf Version: 2024-02-01

 $\log M_{11}\tilde{A} + 07$

#	Article	IF	CITATIONS
1	Selfâ€Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognitonâ€onâ€theâ€Flyâ€t Angewandte Chemie, 2022, 134, .	2.0	3
2	Selfâ€Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognitionâ€onâ€theâ€Flyâ€t Angewandte Chemie - International Edition, 2022, 61, e202116090.	13.8	25
3	Innenrücktitelbild: Selfâ€Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognitonâ€onâ€theâ€Fly―(Angew. Chem. 14/2022). Angewandte Chemie, 2022, 13	4,	0
4	Faceted Crystal Nanoarchitectonics of Organic–Inorganic 3D-Printed Visible-Light Photocatalysts. ACS Applied Energy Materials, 2022, 5, 3252-3258.	5.1	6
5	Functional metal-based 3D-printed electronics engineering: Tunability and bio-recognition. Applied Materials Today, 2022, 28, 101519.	4.3	4
6	Design of bimetallic 3D-printed electrocatalysts via galvanic replacement to enhance energy conversion systems. Applied Catalysis B: Environmental, 2022, 316, 121609.	20.2	8
7	Bistable (Supra)molecular Switches on 3D-Printed Responsive Interfaces with Electrical Readout. ACS Applied Materials & Interfaces, 2021, 13, 12649-12655.	8.0	14
8	Chiral 3Dâ€printed Bioelectrodes. Advanced Functional Materials, 2021, 31, 2010608.	14.9	26
9	Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to great. Carbon, 2021, 175, 413-419.	10.3	47
10	Ruthenium nanoparticles supported on carbon-based nanoallotropes as co-catalyst to enhance the photocatalytic hydrogen evolution activity of carbon nitride. Renewable Energy, 2021, 168, 668-675.	8.9	11
11	Multiresponsive 2D Ti ₃ C ₂ T _{<i>x</i>} MXene <i>via</i> Implanting Molecular Properties. ACS Nano, 2021, 15, 10067-10075.	14.6	16
12	Versatile Design of Functional Organic–Inorganic 3Dâ€Printed (Opto)Electronic Interfaces with Custom Catalytic Activity. Small, 2021, 17, e2103189.	10.0	14
13	3D-Printed COVID-19 immunosensors with electronic readout. Chemical Engineering Journal, 2021, 425, 131433.	12.7	54
14	Synthesis of 0D to 3D hybrid-carbon nanomaterials carrying platinum(0) nanoparticles: Towards the electrocatalytic determination of methylparabens at ultra-trace levels. Sensors and Actuators B: Chemical, 2020, 305, 127467.	7.8	10
15	Selective Discrimination of Toxic Polycyclic Aromatic Hydrocarbons in Water by Targeting π-Stacking Interactions. ACS Applied Materials & Interfaces, 2020, 12, 26688-26693.	8.0	10
16	3D-printed biosensors for electrochemical and optical applications. TrAC - Trends in Analytical Chemistry, 2020, 128, 115933.	11.4	92
17	Electronic Performance of Polymer Carbonâ€Paste Nanoallotropes from 0D to 3D as Novel Gate Electrodes in Waterâ€Gated Órganic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2020, 6, 2000431.	5.1	4
18	Accounts in 3Dâ€Printed Electrochemical Sensors: Towards Monitoring of Environmental Pollutants. ChemElectroChem, 2020, 7, 3404-3413.	3.4	43

Jose Muñoz

#	Article	IF	CITATIONS
19	Cyclodextrin-based superparamagnetic host vesicles as ultrasensitive nanobiocarriers for electrosensing. Nanoscale, 2020, 12, 9884-9889.	5.6	6
20	Tailoring capacitance of 3D-printed graphene electrodes by carbonisation temperature. Nanoscale, 2020, 12, 19673-19680.	5.6	28
21	Carbon-paste nanocomposites as unconventional gate electrodes for electrolyte-gated organic field-effect transistors: electrical modulation and bio-sensing. Journal of Materials Chemistry C, 2019, 7, 14993-14998.	5.5	14
22	Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water. Mikrochimica Acta, 2018, 185, 255.	5.0	10
23	Synergistic Exploitation of the Superoxide Scavenger Properties of Reduced Graphene Oxide and a Trityl Organic Radical for the Impedimetric Sensing of Xanthine. Advanced Materials Interfaces, 2018, 5, 1701072.	3.7	8
24	Carbon nanotube-based nanocomposite sensor tuned with a catechol as novel electrochemical recognition platform of uranyl ion in aqueous samples. Sensors and Actuators B: Chemical, 2018, 273, 1807-1815.	7.8	18
25	Customized Bioâ€functionalization of Nanocomposite Carbon Paste Electrodes for Electrochemical Sensing: A Mini Review. Electroanalysis, 2017, 29, 1660-1669.	2.9	34
26	Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. TrAC - Trends in Analytical Chemistry, 2017, 97, 201-215.	11.4	110
27	Carbonâ€Rich Monolayers on ITO as Highly Sensitive Platforms for Detecting Polycyclic Aromatic Hydrocarbons in Water: The Case of Pyrene. Chemistry - A European Journal, 2017, 23, 15289-15293.	3.3	10
28	Intermatrix synthesis of Ag, AgAu and Au nanoparticles by the galvanic replacement strategy for bactericidal and electrocatalytically active nanocomposites. New Journal of Chemistry, 2016, 40, 10344-10352.	2.8	9
29	Characterization protocol to improve the electroanalytical response of graphene–polymer nanocomposite sensors. Composites Science and Technology, 2016, 125, 71-79.	7.8	26
30	Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots. Applied Surface Science, 2016, 368, 417-426.	6.1	20
31	Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrin. Mikrochimica Acta, 2016, 183, 1579-1589.	5.0	40
32	Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorine. Microchemical Journal, 2015, 122, 189-196.	4.5	53
33	Simple green routes for the customized preparation of sensitive carbon nanotubes/epoxy nanocomposite electrodes with functional metal nanoparticles. RSC Advances, 2014, 4, 44517-44524.	3.6	19
34	Limitations and Benefits of MAX Phases in Electroanalysis. Electroanalysis, 0, , .	2.9	0