
Angelo Agathanggelou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2169183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TLR9 expression in chronic lymphocytic leukemia identifies a promigratory subpopulation and novel therapeutic target. Blood, 2021, 137, 3064-3078.	1.4	20
2	Aniline-containing derivatives of parthenolide: Synthesis and anti-chronic lymphocytic leukaemia activity. Tetrahedron, 2020, 76, 131631.	1.9	6
3	Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL. Blood, 2020, 135, 411-428.	1.4	17
4	Derivatisation of parthenolide to address chemoresistant chronic lymphocytic leukaemia. MedChemComm, 2019, 10, 1379-1390.	3.4	15
5	CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature, 2018, 559, 285-289.	27.8	297
6	USP7 inhibition alters homologous recombination repair and targets CLL cells independently of ATM/p53 functional status. Blood, 2017, 130, 156-166.	1.4	60
7	Dynamic changes in clonal cytogenetic architecture during progression of chronic lymphocytic leukemia in patients and patient-derived murine xenografts. Oncotarget, 2017, 8, 44749-44760.	1.8	13
8	ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood, 2016, 127, 582-595.	1.4	214
9	A New Murine Model for B Cell Malignancies on ATM-Deficient Background Reveals Involvement of Multiple Pathogenic Mechanisms. Blood, 2016, 128, 4093-4093.	1.4	0
10	T-cell number and subtype influence the disease course of primary chronic lymphocytic leukaemia xenografts in alymphoid mice. DMM Disease Models and Mechanisms, 2015, 8, 1401-12.	2.4	7
11	Targeting the Ataxia Telangiectasia Mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica, 2015, 100, 1076-85.	3.5	13
12	UCHL1 Is a New Therapeutic Target in Lymphoid Malignancies, Independent of ATM and TP53 status. Blood, 2015, 126, 1746-1746.	1.4	1
13	Primary CLL Xenograft: A Model System to Study the Role of T-Cells in CLL Biology and Therapeutic Response. Blood, 2014, 124, 3284-3284.	1.4	8
14	ATR Inhibition Exacerbates Replication Stress in TP53 or ATM Deficient CLL Cells and Enhances Sensitivity to Chemotherapy and Targeted Therapy. Blood, 2014, 124, 3340-3340.	1.4	1
15	CLL Progression Is Associated with Increased Clonal Diversity and Replication Stress. Blood, 2014, 124, 1977-1977.	1.4	0
16	Targeted Treatments: Pre-Clinical Evaluation Of Efficacy By Tracking Clonal Diversity In CLL Xenograft Models. Blood, 2013, 122, 875-875.	1.4	0
17	Synthetic Lethality In CLL With DNA Damage Response Defect By Targeting ATR Pathway. Blood, 2013, 122, 120-120.	1.4	2
18	Inhibition of Histone Deacetylase Activity Compromises Homologous Recombination Repair and Increases Sensitivity of Chemo-Resistant Chronic Lymphocytic Leukemia Cells to Olaparib. Blood, 2012, 120, 3891-3891.	1.4	2

#	Article	IF	CITATIONS
19	Inhibition of BRD4 Bromodomains Is a Potent Novel Strategy to Target Apoptosis Resistance in Paediatric ALL. Blood, 2011, 118, 77-77.	1.4	1
20	New Therapeutic Strategy for Sensitisation of CLL Cells with Inactivation of the DNA Damage Response by Targeting the Deubiquitylating Enzyme USP7-Dependent Pathways,. Blood, 2011, 118, 3865-3865.	1.4	1
21	ATM Mutant Lymphoid Tumour Cells Exhibit Impaired Activation of the Redox-Sensitive Nrf2-ARE Detoxification Pathway and Are Differentially Sensitive to Nrf2-Activating Compounds. Blood, 2010, 116, 49-49.	1.4	0
22	Stratification of pediatric ALL by in vitro cellular responses to DNA double-strand breaks provides insight into the molecular mechanisms underlying clinical response. Blood, 2009, 113, 117-126.	1.4	18
23	The Epigenetic Therapies Azacitidine and Sodium Valproate Augment Immune Responses to the MAGE Cancer Testis Antigen in Acute Myeloid Leukemia and Myeloma Blood, 2009, 114, 2086-2086.	1.4	Ο
24	Epigenetic Manipulation of Cancer Testis Antigen (CTA) Expression: A Strategy for Manipulating the Graft-Versus Leukaemia Response in Patients Allografted for Haematological Malignancies. Blood, 2008, 112, 600-600.	1.4	2
25	Defect in DNA Double Strand Break Response in Paediatric ALL Is Caused by Upregulation of Multiple Pro-Survival Pathways That Can Serve as Therapeutic Targets Blood, 2008, 112, 3344-3344.	1.4	0
26	Depletion of the Ras Association Domain Family 1, Isoform A–Associated Novel Microtubule-Associated Protein, C19ORF5/MAP1S, Causes Mitotic Abnormalities. Cancer Research, 2007, 67, 492-500.	0.9	42
27	Involvement of the <i>RASSF1A</i> Tumor Suppressor Gene in Controlling Cell Migration. Cancer Research, 2005, 65, 7653-7659.	0.9	78
28	Transcriptional Regulation of Cyclin A2 by RASSF1A through the Enhanced Binding of p120E4F to the Cyclin A2 Promoter. Cancer Research, 2005, 65, 2690-2697.	0.9	39
29	Role of the Ras-Association Domain Family 1 Tumor Suppressor Gene in Human Cancers. Cancer Research, 2005, 65, 3497-3508.	0.9	362
30	RASSF1A Interacts with Microtubule-Associated Proteins and Modulates Microtubule Dynamics. Cancer Research, 2004, 64, 4112-4116.	0.9	127
31	Frequent epigenetic inactivation of the RASSF1A tumor suppressor gene in Hodgkin's lymphoma. Oncogene, 2004, 23, 1326-1331.	5.9	63
32	Identification of the E1A-Regulated Transcription Factor p120E4F as an Interacting Partner of the RASSF1A Candidate Tumor Suppressor Gene. Cancer Research, 2004, 64, 102-107.	0.9	67
33	Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene, 2003, 22, 147-150.	5.9	99
34	Frequent epigenetic inactivation of the RASSF1A tumour suppressor gene in testicular tumours and distinct methylation profiles of seminoma and nonseminoma testicular germ cell tumours. Oncogene, 2003, 22, 461-466.	5.9	109
35	Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene, 2003, 22, 1580-1588.	5.9	98
36	Identification of novel gene expression targets for the Ras association domain family 1 (RASSF1A) tumor suppressor gene in non-small cell lung cancer and neuroblastoma. Cancer Research, 2003, 63, 5344-51.	0.9	69

#	Article	IF	CITATIONS
37	Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene, 2001, 20, 1509-1518.	5.9	341
38	RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene, 2001, 20, 7573-7577.	5.9	127