Allison Groseth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2168874/publications.pdf

Version: 2024-02-01

69 papers 3,222 citations

172457 29 h-index 55 g-index

72 all docs 72 docs citations

times ranked

72

3606 citing authors

#	Article	IF	CITATIONS
1	Immunization with GP1 but Not Core-like Particles Displaying Isolated Receptor-Binding Epitopes Elicits Virus-Neutralizing Antibodies against JunÃn Virus. Vaccines, 2022, 10, 173.	4.4	5
2	Virus–Host Cell Interactions. Cells, 2022, 11, 804.	4.1	11
3	Generation of Reporter-Expressing New World Arenaviruses: A Systematic Comparison. Viruses, 2022, 14, 1563.	3.3	3
4	Remdesivir inhibits the polymerases of the novel filoviruses Lloviu and Bombali virus. Antiviral Research, 2021, 192, 105120.	4.1	8
5	CP100356 Hydrochloride, a P-Glycoprotein Inhibitor, Inhibits Lassa Virus Entry: Implication of a Candidate Pan-Mammarenavirus Entry Inhibitor. Viruses, 2021, 13, 1763.	3.3	2
6	Differences in Viral RNA Synthesis but Not Budding or Entry Contribute to the In Vitro Attenuation of Reston Virus Compared to Ebola Virus. Microorganisms, 2020, 8, 1215.	3 . 6	10
7	Complete genome sequence of Tacaribe virus. Archives of Virology, 2020, 165, 1899-1903.	2.1	6
8	BH3-only sensors Bad, Noxa and Puma are Key Regulators of Tacaribe virus-induced Apoptosis. PLoS Pathogens, 2020, 16, e1008948.	4.7	12
9	Therapeutic strategies to target the Ebola virus life cycle. Nature Reviews Microbiology, 2019, 17, 593-606.	28.6	110
10	High-throughput screening for negative-stranded hemorrhagic fever viruses using reverse genetics. Antiviral Research, 2019, 170, 104569.	4.1	13
11	Assessing cross-reactivity of JunÃn virus-directed neutralizing antibodies. Antiviral Research, 2019, 163, 106-116.	4.1	10
12	Assessment of the function and intergenus-compatibility of Ebola and Lloviu virus proteins. Journal of General Virology, 2019, 100, 760-772.	2.9	10
13	Apoptosis during arenavirus infection: mechanisms and evasion strategies. Microbes and Infection, 2018, 20, 65-80.	1.9	13
14	Serological Evidence for the Circulation of Ebolaviruses in Pigs From Sierra Leone. Journal of Infectious Diseases, 2018, 218, S305-S311.	4.0	20
15	Generation and Optimization of a Green Fluorescent Protein-Expressing Transcription and Replication-Competent Virus-Like Particle System for Ebola Virus. Journal of Infectious Diseases, 2018, 218, S360-S364.	4.0	14
16	Lifecycle modelling systems support inosine monophosphate dehydrogenase (IMPDH) as a pro-viral factor and antiviral target for New World arenaviruses. Antiviral Research, 2018, 157, 140-150.	4.1	21
17	A genome-wide siRNA screen identifies a druggable host pathway essential for the Ebola virus life cycle. Genome Medicine, 2018, 10, 58.	8.2	41
18	Forty Years of Ebolavirus Molecular Biology: Understanding a Novel Disease Agent Through the Development and Application of New Technologies. Methods in Molecular Biology, 2017, 1628, 15-38.	0.9	3

#	Article	IF	CITATIONS
19	Ebola virus VP24 interacts with NP to facilitate nucleocapsid assembly and genome packaging. Scientific Reports, 2017, 7, 7698.	3.3	55
20	Maguari Virus Associated with Human Disease. Emerging Infectious Diseases, 2017, 23, 1325-1331.	4.3	19
21	Generation of Recombinant Ebola Viruses Using Reverse Genetics. Methods in Molecular Biology, 2017, 1628, 177-188.	0.9	3
22	The Merits of Malaria Diagnostics during an Ebola Virus Disease Outbreak. Emerging Infectious Diseases, 2016, 22, 323-6.	4.3	25
23	Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool. Emerging Infectious Diseases, 2016, 22, 331-4.	4.3	175
24	Clinical Chemistry of Patients With Ebola in Monrovia, Liberia. Journal of Infectious Diseases, 2016, 214, S303-S307.	4.0	7
25	Response to Comment on "Mutation rate and genotype variation of Ebola virus from Mali case sequences― Science, 2016, 353, 658-658.	12.6	4
26	PlasmodiumParasitemia Associated With Increased Survival in Ebola Virus–Infected Patients. Clinical Infectious Diseases, 2016, 63, 1026-1033.	5.8	42
27	Ebola Laboratory Response at the Eternal Love Winning Africa Campus, Monrovia, Liberia, 2014–2015. Journal of Infectious Diseases, 2016, 214, S169-S176.	4.0	24
28	The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells. Journal of General Virology, 2016, 97, 855-866.	2.9	12
29	Complete genome sequence of trivittatus virus. Archives of Virology, 2015, 160, 2637-2639.	2.1	4
30	Mutation rate and genotype variation of Ebola virus from Mali case sequences. Science, 2015, 348, 117-119.	12.6	127
31	Spatiotemporal Analysis of Guaroa Virus Diversity, Evolution, and Spread in South America. Emerging Infectious Diseases, 2015, 21, 460-463.	4.3	4
32	Assessing the contribution of interferon antagonism to the virulence of West African Ebola viruses. Nature Communications, 2015, 6, 8000.	12.8	19
33	Molecular Characterization of Human Pathogenic Bunyaviruses of the Nyando and Bwamba/Pongola Virus Groups Leads to the Genetic Identification of MojuÃ-dos Campos and Kaeng Khoi Virus. PLoS Neglected Tropical Diseases, 2014, 8, e3147.	3.0	23
34	Complete Genome Sequences of Three Ebola Virus Isolates from the 2014 Outbreak in West Africa. Genome Announcements, 2014, 2, .	0.8	28
35	A Novel Life Cycle Modeling System for Ebola Virus Shows a Genome Length-Dependent Role of VP24 in Virus Infectivity. Journal of Virology, 2014, 88, 10511-10524.	3.4	134
36	Development and application of reporter-expressing mononegaviruses: Current challenges and perspectives. Antiviral Research, 2014, 103, 78-87.	4.1	22

#	Article	IF	CITATIONS
37	A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals. Antiviral Research, 2013, 99, 207-213.	4.1	55
38	The role of oligomerization for the biological functions of the arenavirus nucleoprotein. Archives of Virology, 2013, 158, 1895-1905.	2.1	11
39	Arenavirus Budding: A Common Pathway with Mechanistic Differences. Viruses, 2013, 5, 528-549.	3.3	29
40	An Upstream Open Reading Frame Modulates Ebola Virus Polymerase Translation and Virus Replication. PLoS Pathogens, 2013, 9, e1003147.	4.7	66
41	Cleavage of the Junin Virus Nucleoprotein Serves a Decoy Function To Inhibit the Induction of Apoptosis during Infection. Journal of Virology, 2013, 87, 224-233.	3.4	24
42	Profile and Persistence of the Virus-Specific Neutralizing Humoral Immune Response in Human Survivors of Sudan Ebolavirus (Gulu). Journal of Infectious Diseases, 2013, 208, 299-309.	4.0	47
43	The Ebola Virus Glycoprotein Contributes to but Is Not Sufficient for Virulence In Vivo. PLoS Pathogens, 2012, 8, e1002847.	4.7	88
44	Complete Genome Sequencing of Four Geographically Diverse Strains of Batai Virus. Journal of Virology, 2012, 86, 13844-13845.	3.4	14
45	Profiling the Native Specific Human Humoral Immune Response to Sudan Ebola Virus Strain Gulu by Chemiluminescence Enzyme-Linked Immunosorbent Assay. Vaccine Journal, 2012, 19, 1844-1852.	3.1	26
46	Complete Genome Sequencing of Mosquito and Human Isolates of Ngari Virus. Journal of Virology, 2012, 86, 13846-13847.	3.4	18
47	Inclusion Bodies Are a Site of Ebolavirus Replication. Journal of Virology, 2012, 86, 11779-11788.	3.4	183
48	Current ebola vaccines. Expert Opinion on Biological Therapy, 2012, 12, 859-872.	3.1	76
49	Minigenomes, transcription and replication competent virus-like particles and beyond: Reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Research, 2011, 91, 195-208.	4.1	103
50	Clinical aspects of Marburg hemorrhagic fever. Future Virology, 2011, 6, 1091-1106.	1.8	102
51	Vesicular Stomatitis Virus–Based Ebola Vaccines With Improved Cross-Protective Efficacy. Journal of Infectious Diseases, 2011, 204, S1066-S1074.	4.0	102
52	Tacaribe Virus but Not Junin Virus Infection Induces Cytokine Release from Primary Human Monocytes and Macrophages. PLoS Neglected Tropical Diseases, 2011, 5, e1137.	3.0	51
53	Both matrix proteins of Ebola virus contribute to the regulation of viral genome replication and transcription. Virology, 2010, 403, 56-66.	2.4	131
54	Oligomerization of Ebola Virus VP40 Is Essential for Particle Morphogenesis and Regulation of Viral Transcription. Journal of Virology, 2010, 84, 7053-7063.	3.4	109

#	Article	IF	CITATIONS
55	Viral Protein Determinants of Lassa Virus Entry and Release from Polarized Epithelial Cells. Journal of Virology, 2010, 84, 3178-3188.	3.4	56
56	Efficient Budding of the Tacaribe Virus Matrix Protein Z Requires the Nucleoprotein. Journal of Virology, 2010, 84, 3603-3611.	3.4	59
57	Detection of Sudan ebolavirus (strain Gulu) epitopes that are targets of the humoral immune response in survivors. International Journal of Infectious Diseases, 2010, 14, e461-e462.	3.3	2
58	The Ebola virus ribonucleoprotein complex: A novel VP30–L interaction identified. Virus Research, 2009, 140, 8-14.	2.2	84
59	In Vitro Evaluation of Antisense RNA Efficacy against Filovirus Infection, by Use of Reverse Genetics. Journal of Infectious Diseases, 2007, 196, S382-S389.	4.0	13
60	In Vitro and In Vivo Characterization of Recombinant Ebola Viruses Expressing Enhanced Green Fluorescent Protein. Journal of Infectious Diseases, 2007, 196, S313-S322.	4.0	74
61	The ecology of Ebola virus. Trends in Microbiology, 2007, 15, 408-416.	7.7	201
62	Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends in Molecular Medicine, 2006, 12, 206-215.	6.7	152
63	Infection of Nail`ve Target Cells with Virus-Like Particles: Implications for the Function of Ebola Virus VP24. Journal of Virology, 2006, 80, 7260-7264.	3.4	123
64	Hemorrhagic Fever Viruses as Biological Weapons. , 2005, , 169-191.		4
65	The role of reverse genetics systems in studying viral hemorrhagic fevers. Thrombosis and Haemostasis, 2005, 94, 240-53.	3.4	20
66	RNA Polymerase I-Driven Minigenome System for Ebola Viruses. Journal of Virology, 2005, 79, 4425-4433.	3.4	78
67	The role of reverse genetics systems in determining filovirus pathogenicity., 2005, , 157-177.		5
68	Rescue of Ebola virus from cDNA using heterologous support proteins. Virus Research, 2004, 106, 43-50.	2.2	33
69	Molecular characterization of an isolate from the 1989/90 epizootic of Ebola virus Reston among macaques imported into the United States. Virus Research, 2002, 87, 155-163.	2.2	40