
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2168045/publications.pdf Version: 2024-02-01

DETED ROOSS

#	Article	IF	CITATIONS
1	Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Gene, 2021, 776, 145407.	2.2	42
2	Optimized High-Contrast Brightfield Microscopy Application for Noninvasive Proliferation Assays of Human Cell Cultures. Assay and Drug Development Technologies, 2020, 18, 215-225.	1.2	3
3	Riboflavin Deficiency—Implications for General Human Health and Inborn Errors of Metabolism. International Journal of Molecular Sciences, 2020, 21, 3847.	4.1	92
4	An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space. Cell Stress and Chaperones, 2020, 25, 407-416.	2.9	18
5	Deficiency of the mitochondrial sulfide regulator ETHE1 disturbs cell growth, glutathione level and causes proteome alterations outside mitochondria. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 126-135.	3.8	14
6	A Cell Model for HSP60 Deficiencies: Modeling Different Levels of Chaperonopathies Leading to Oxidative Stress and Mitochondrial Dysfunction. Methods in Molecular Biology, 2019, 1873, 225-239.	0.9	7
7	The clinical outcome of <i>LMNA</i> missense mutations can be associated with the amount of mutated protein in the nuclear envelope. European Journal of Heart Failure, 2018, 20, 1404-1412.	7.1	12
8	Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro. Diabetes, Obesity and Metabolism, 2018, 20, 2264-2273.	4.4	35
9	APD-Containing Cyclolipodepsipeptides Target Mitochondrial Function in Hypoxic Cancer Cells. Cell Chemical Biology, 2018, 25, 1337-1349.e12.	5.2	27
10	Mitochondrial Spare Respiratory Capacity Is Negatively Correlated with Nuclear Reprogramming Efficiency. Stem Cells and Development, 2017, 26, 166-176.	2.1	21
11	Proteomics of human mitochondria. Mitochondrion, 2017, 33, 2-14.	3.4	44
12	Disease-Associated Mutations in the HSPD1 Gene Encoding the Large Subunit of the Mitochondrial HSP60/HSP10 Chaperonin Complex. Frontiers in Molecular Biosciences, 2016, 3, 49.	3.5	46
13	Effects of a Mutation in the HSPE1 Gene Encoding the Mitochondrial Co-chaperonin HSP10 and Its Potential Association with a Neurological and Developmental Disorder. Frontiers in Molecular Biosciences, 2016, 3, 65.	3.5	38
14	Mitochondrial Hsp70 and the troubles of nomenclature: leaving behind tradition to gain intuitiveness and chaperones, 2016, 21, 547-551.	2.9	0
15	Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cellular and Molecular Life Sciences, 2016, 73, 2543-2563.	5.4	39
16	CLPB Variants Associated with Autosomal-Recessive Mitochondrial Disorder with Cataract, Neutropenia, Epilepsy, and Methylglutaconic Aciduria. American Journal of Human Genetics, 2015, 96, 258-265.	6.2	58
17	Application of an Image Cytometry Protocol for Cellular and Mitochondrial Phenotyping on Fibroblasts from Patients with Inherited Disorders. JIMD Reports, 2015, 27, 17-26.	1.5	4
18	Do lamin A and lamin C have unique roles?. Chromosoma, 2015, 124, 1-12.	2.2	21

#	Article	IF	CITATIONS
19	Selected reaction monitoring as an effective method for reliable quantification of diseaseâ€associated proteins in maple syrup urine disease. Molecular Genetics & Genomic Medicine, 2014, 2, 383-392.	1.2	12
20	Proteomic investigation of cultivated fibroblasts from patients with mitochondrial short-chain acyl-CoA dehydrogenase deficiency. Molecular Genetics and Metabolism, 2014, 111, 360-368.	1,1	24
21	The Hsp60 folding machinery is crucial for manganese superoxide dismutase folding and function. Free Radical Research, 2014, 48, 168-179.	3.3	50
22	Truncating Plakophilin-2 Mutations in Arrhythmogenic Cardiomyopathy Are Associated With Protein Haploinsufficiency in Both Myocardium and Epidermis. Circulation: Cardiovascular Genetics, 2014, 7, 230-240.	5.1	36
23	Ethylmalonic Encephalopathy ETHE1 R163W/R163Q Mutations Alter Protein Stability and Redox Properties of the Iron Centre. PLoS ONE, 2014, 9, e107157.	2.5	19
24	Late onset motoneuron disorder caused by mitochondrial Hsp60 chaperone deficiency in mice. Neurobiology of Disease, 2013, 54, 12-23.	4.4	44
25	Mutated Desmoglein-2 Proteins are Incorporated into Desmosomes and Exhibit Dominant-Negative Effects in Arrhythmogenic Right Ventricular Cardiomyopathy. Human Mutation, 2013, 34, 697-705.	2.5	30
26	Protein expression studies of desmoplakin mutations in cardiomyopathy patients reveal different molecular disease mechanisms. Clinical Genetics, 2013, 84, 20-30.	2.0	32
27	The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins. Experimental Cell Research, 2013, 319, 3010-3019.	2.6	23
28	Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. Journal of Clinical Investigation, 2013, 123, 4667-4680.	8.2	101
29	Molecular Chaperone Disorders: Defective Hsp60 in Neurodegeneration. Current Topics in Medicinal Chemistry, 2013, 12, 2491-2503.	2.1	43
30	Molecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency. Human Molecular Genetics, 2012, 21, 3435-3448.	2.9	80
31	Heterozygosity for an inâ€frame deletion causes glutarylâ€CoA dehydrogenase deficiency in a patient detected by newborn screening: investigation of the effect of the mutant allele. Journal of Inherited Metabolic Disease, 2012, 35, 787-796.	3.6	9
32	Identification of Elements That Dictate the Specificity of Mitochondrial Hsp60 for Its Co-Chaperonin. PLoS ONE, 2012, 7, e50318.	2.5	32
33	MCAD deficiency in Denmark. Molecular Genetics and Metabolism, 2012, 106, 175-188.	1.1	33
34	Cofactors and metabolites as potential stabilizers of mitochondrial acyl-CoA dehydrogenases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1658-1663.	3.8	36
35	Quantitative Proteomics Reveals Cellular Targets of Celastrol. PLoS ONE, 2011, 6, e26634.	2.5	48
36	A polymorphic position in electron transfer flavoprotein modulates kinetic stability as evidenced by thermal stress. FEBS Letters, 2011, 585, 505-510.	2.8	16

#	Article	IF	CITATIONS
37	A cell model to study different degrees of Hsp60 deficiency in HEK293 cells. Cell Stress and Chaperones, 2011, 16, 633-640.	2.9	14
38	Anti-Inflammatory Heat Shock Protein 70 Genes are Positively Associated with Human Survival. Current Pharmaceutical Design, 2010, 16, 796-801.	1.9	23
39	A Cellular Viability Assay to Monitor Drug Toxicity. Methods in Molecular Biology, 2010, 648, 303-311.	0.9	51
40	Protein Misfolding and Cellular Stress: An Overview. Methods in Molecular Biology, 2010, 648, 3-23.	0.9	129
41	Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress and Chaperones, 2010, 15, 851-863.	2.9	83
42	Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy. Metabolism: Clinical and Experimental, 2010, 59, 814-823.	3.4	6
43	Emerging Roles for Riboflavin in Functional Rescue of Mitochondrial β-Oxidation Flavoenzymes. Current Medicinal Chemistry, 2010, 17, 3842-3854.	2.4	73
44	Oxidative Stress-Induced Metabolic Changes in Mouse C2C12 Myotubes Studied with High-Resolution ¹³ C, ¹ H, and ³¹ P NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 2010, 58, 1918-1926.	5.2	4
45	NMR-Based Metabonomic Investigation of Heat Stress in Myotubes Reveals a Time-Dependent Change in the Metabolites. Journal of Agricultural and Food Chemistry, 2010, 58, 6376-6386.	5.2	8
46	Mutational hotspots in electron transfer flavoprotein underlie defective folding and function in multiple acyl-CoA dehydrogenase deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 1070-1077.	3.8	21
47	Misfolding of short-chain acyl-CoA dehydrogenase leads to mitochondrial fission and oxidative stress. Molecular Genetics and Metabolism, 2010, 100, 155-162.	1.1	37
48	Measuring Consequences of Protein Misfolding and Cellular Stress Using OMICS Techniques. Methods in Molecular Biology, 2010, 648, 119-135.	0.9	2
49	Role of Flavinylation in a Mild Variant of Multiple Acyl-CoA Dehydrogenation Deficiency. Journal of Biological Chemistry, 2009, 284, 4222-4229.	3.4	67
50	Sequence variants in SPAST, SPG3A and HSPD1 in hereditary spastic paraplegia. Journal of the Neurological Sciences, 2009, 284, 90-95.	0.6	17
51	Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress. Proteome Science, 2009, 7, 20.	1.7	37
52	Mitochondrial fatty acid oxidation defects—remaining challenges. Journal of Inherited Metabolic Disease, 2008, 31, 643-657.	3.6	123
53	The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. Human Genetics, 2008, 124, 43-56.	3.8	101
54	Mitochondrial Hsp60 Chaperonopathy Causes an Autosomal-Recessive Neurodegenerative Disorder Linked to Brain Hypomyelination and Leukodystrophy. American Journal of Human Genetics, 2008, 83, 30-42.	6.2	195

#	Article	IF	CITATIONS
55	Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience, 2008, 153, 474-482.	2.3	74
56	The Hsp60-(p.V98I) Mutation Associated with Hereditary Spastic Paraplegia SPG13 Compromises Chaperonin Function Both in Vitro and in Vivo. Journal of Biological Chemistry, 2008, 283, 15694-15700.	3.4	80
57	A novel mutation in the HSPD1 gene in a patient with hereditary spastic paraplegia. Journal of Neurology, 2007, 254, 897-900.	3.6	51
58	Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential. Journal of Human Genetics, 2007, 52, 56-65.	2.3	29
59	Protein Misfolding and Human Disease. Annual Review of Genomics and Human Genetics, 2006, 7, 103-124.	6.2	258
60	Heat-Shock Protein 70 Genes and Human Longevity: A View from Denmark. Annals of the New York Academy of Sciences, 2006, 1067, 301-308.	3.8	43
61	Reduced heat shock response in human mononuclear cells during aging and its association with polymorphisms in HSP70 genes. Cell Stress and Chaperones, 2006, 11, 208.	2.9	66
62	Protein Misfolding, Aggregation, and Degradation in Disease ^{. Molecular Biotechnology, 2005, 31, 141-150.}	2.4	54
63	Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. FEBS Journal, 2005, 272, 2037-2049.	4.7	71
64	Differential degradation of variant medium-chain acyl-CoA dehydrogenase by the protein quality control proteases Lon and ClpXP. Biochemical and Biophysical Research Communications, 2005, 333, 1160-1170.	2.1	12
65	Down-regulation of Hsp60 expression by RNAi impairs folding of medium-chain acyl-CoA dehydrogenase wild-type and disease-associated proteins. Molecular Genetics and Metabolism, 2005, 85, 260-270.	1.1	36
66	Clinical and genetic characteristics of cardiac actin gene mutations in hypertrophic cardiomyopathy. Journal of Medical Genetics, 2004, 41, 10e-10.	3.2	46
67	The Y42H mutation in medium-chain acyl-CoA dehydrogenase, which is prevalent in babies identified by MS/MS-based newborn screening, is temperature sensitive. FEBS Journal, 2004, 271, 4053-4063.	0.2	29
68	Association Between Low Self-Rated Health and Heterozygosity for -110A > C Polymorphism in the Promoter Region of HSP70-1 in Aged Danish Twins. Biogerontology, 2004, 5, 169-176.	3.9	29
69	Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Molecular pathogenesis and genotype-phenotype relationships. FEBS Journal, 2004, 271, 470-482.	0.2	86
70	Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Human Genetics, 2003, 112, 71-77.	3.8	131
71	Clear relationship betweenETF/ETFDH genotype and phenotype in patients with multiple acyl-CoA dehydrogenation deficiency. Human Mutation, 2003, 22, 12-23.	2.5	196
72	Misfolding, Degradation, and Aggregation of Variant Proteins. Journal of Biological Chemistry, 2003, 278. 47449-47458.	3.4	74

#	Article	IF	CITATIONS
73	Investigation of Folding and Degradation of In Vitro Synthesized Mutant Proteins in Mitochondria. , 2003, 232, 285-294.		3
74	Basic Introduction to In Vivo Protein Folding and Its Defects. , 2003, 232, 17-26.		1
75	Hereditary Spastic Paraplegia SPG13 Is Associated with a Mutation in the Gene Encoding the Mitochondrial Chaperonin Hsp60. American Journal of Human Genetics, 2002, 70, 1328-1332.	6.2	347
76	Assessing the relative importance of the biophysical properties of amino acid substitutions associated with human genetic disease. Human Mutation, 2002, 20, 98-109.	2.5	39
77	Medium-Chain Acyl-CoA Dehydrogenase (MCAD) Mutations Identified by MS/MS-Based Prospective Screening of Newborns Differ from Those Observed in Patients with Clinical Symptoms: Identification and Characterization of a New, Prevalent Mutation That Results in Mild MCAD Deficiency*. American lournal of Human Genetics. 2001. 68. 1408-1418.	6.2	219
78	Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. Human Mutation, 2001, 18, 169-189.	2.5	178
79	The role of chaperone-assisted folding and quality control in inborn errors of metabolism: Protein folding disorders. Journal of Inherited Metabolic Disease, 2001, 24, 189-212.	3.6	65
80	Defective folding and rapid degradation of mutant proteins is a common disease mechanism in genetic disorders. Journal of Inherited Metabolic Disease, 2000, 23, 441-447.	3.6	52
81	Glycosylation of the N-terminal potential N-glycosylation sites in the human alpha1,3-fucosyltransferase V and -VI (hFucTV and -VI). Glycoconjugate Journal, 2000, 17, 859-865.	2.7	13
82	Characterization of mouse Clpp protease cDNA, gene, and protein. Mammalian Genome, 2000, 11, 275-280.	2.2	5
83	Human and mouse mitochondrial orthologs of bacterial ClpX. Mammalian Genome, 2000, 11, 899-905.	2.2	36
84	The C-terminal N-glycosylation sites of the human Â1,3/4-fucosyltransferase III, -V, and -VI (hFucTIII, -V and) Tj ET	QqQ <u>Q</u> 0 rg	gBT ₃ 5verlock
85	Grp78 Is Involved in Retention of Mutant Low Density Lipoprotein Receptor Protein in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2000, 275, 33861-33868.	3.4	47
86	Isolated 2-Methylbutyrylglycinuria Caused by Short/Branched-Chain Acyl-CoA Dehydrogenase Deficiency: Identification of a New Enzyme Defect, Resolution of Its Molecular Basis, and Evidence for Distinct Acyl-CoA Dehydrogenases in Isoleucine And Valine Metabolism. American Journal of Human Genetics, 2000, 67, 1095-1103.	6.2	79
87	Prevalent mutations in fatty acid oxidation disorders: diagnostic considerations. European Journal of Pediatrics, 2000, 159, S213-S218.	2.7	37
88	Expression of transforming growth factor alpha and epidermal growth factor receptor in human bladder cancer. Scandinavian Journal of Clinical and Laboratory Investigation, 1999, 59, 267-277.	1.2	35
89	Protein misfolding and degradation in genetic diseases. Human Mutation, 1999, 14, 186-198.	2.5	184
90	Clear Correlation of Genotype with Disease Phenotype in Very–Long-Chain Acyl-CoA Dehydrogenase Deficiency. American Journal of Human Genetics, 1999, 64, 479-494.	6.2	285

#	Article	IF	CITATIONS
91	A Polymorphic Variant in the Human Electron Transfer Flavoprotein α-Chain (α-T171) Displays Decreased Thermal Stability and Is Overrepresented in Very-Long-Chain acyl-CoA Dehydrogenase-Deficient Patients with Mild Childhood Presentation. Molecular Genetics and Metabolism, 1999, 67, 138-147.	1.1	21
92	Biochemical characterization of a variant human medium-chain acyl-CoA dehydrogenase with a disease-associated mutation localized in the active site. Biochemical Journal, 1999, 337, 225.	3.7	5
93	Biochemical Characterisation of Mutations of Human Medium-Chain Acyl-CoA Dehydrogenase. , 1999, 466, 387-393.		1
94	α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 1999, 103, R39-R43.	8.2	353
95	Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511C>T, is present at an unexpectedly high frequency in the general population, as was the case for 625C>A, together conferring susceptibility to ethylmalonic aciduria. Human Molecular Genetics, 1998, 7, 619-627.	2.9	109
96	Rapid Degradation of Short-chain Acyl-CoA Dehydrogenase Variants with Temperature-sensitive Folding Defects Occurs after Import into Mitochondria. Journal of Biological Chemistry, 1998, 273, 13065-13071.	3.4	48
97	A human homologue of Escherichia coli ClpP caseinolytic protease: recombinant expression, intracellular processing and subcellular localization. Biochemical Journal, 1998, 331, 309-316.	3.7	67
98	77 Mutations of Human Medium-Chain Acyl-CoA Dehydrogenase. Biochemical Society Transactions, 1998, 26, S65-S65.	3.4	1
99	The Molecular Basis of Medium-Chain Acyl-CoA Dehydrogenase (MCAD) Deficiency in Compound Heterozygous Patients: Is There Correlation between Genotype and Phenotype?. Human Molecular Genetics, 1997, 6, 695-707.	2.9	119
100	Impaired Folding and Subunit Assembly as Disease Mechanism: The Example of Medium-Chain acyl-CoA Dehydrogenase Deficiency. Progress in Molecular Biology and Translational Science, 1997, 58, 301-337.	1.9	12
101	Biochemical Characterization of Purified, Human Recombinant Lys304Glu Medium-Chain Acyl-Coa Dehydrogenase Containing the Common Disease-Causing Mutation and Comparison with the Normal Enzyme. FEBS Journal, 1997, 246, 548-556.	0.2	27
102	Structural organization of the human short-chain acyl-CoA dehydrogenase gene. Mammalian Genome, 1997, 8, 922-926.	2.2	42
103	Medium-Long-Chain Chimeric Human Acyl-CoA Dehydrogenase:Â Medium-Chain Enzyme with the Active Center Base Arrangement of Long-Chain Acyl-CoA Dehydrogenaseâ€. Biochemistry, 1996, 35, 12402-12411.	2.5	54
104	The mutational spectrum in very long-chain acyl-CoA dehydrogenase deficiency. Journal of Inherited Metabolic Disease, 1996, 19, 169-172.	3.6	40
105	Influence of Lewis α1-3/4-L-Fucosyltransferase (FUT3) Gene Mutations on Enzyme Activity, Erythrocyte Phenotyping, and Circulating Tumor Marker Sialyl-Lewis a Levels. Journal of Biological Chemistry, 1996, 271, 32260-32268.	3.4	94
106	Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene [published erratum appears in Hum Mol Genet 1996 Sep;5(9):1390]. Human Molecular Genetics, 1996, 5, 461-472.	2.9	106
107	Ethylmalonic Aciduria Is Associated with an Amino Acid Variant of Short Chain Acyl-Coenzyme A Dehydrogenase. Pediatric Research, 1996, 39, 1059-1066.	2.3	92
108	Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells. Human Mutation, 1995, 6, 226-231.	2.5	21

#	Article	IF	CITATIONS
109	Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in a family with a previous fatal case of sudden unexpected death in childhood. Prenatal Diagnosis, 1995, 15, 82-86.	2.3	24
110	Effects of Two Mutations Detected in Medium Chain Acyl-CoA Dehydrogenase (MCAD)-deficient Patients on Folding, Oligomer Assembly, and Stability of MCAD Enzyme. Journal of Biological Chemistry, 1995, 270, 10284-10290.	3.4	79
111	Human ClpP protease: cDNA sequence, tissue-specific expression and chromosomal assignment of the gene. FEBS Letters, 1995, 377, 249-252.	2.8	47
112	Amino acid polymorphism (Gly209Ser) in the ACADS gene. Human Molecular Genetics, 1994, 3, 1711-1711.	2.9	19
113	Molecular genetic characterization and urinary excretion pattern of metabolites in two families with MCAD deficiency due to compound heterozygosity with a 13 base pair insertion in one allele. Journal of Inherited Metabolic Disease, 1994, 17, 169-184.	3.6	11
114	Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency due to heterozygosity for the common mutation and an allele resulting in low levels of MCAD mRNA. Journal of Inherited Metabolic Disease, 1994, 17, 275-278.	3.6	2
115	Characterization of Wild-Type Human Medium-Chain Acyl-CoA Dehydrogenase (MCAD) and Mutant Enzymes Present in MCAD-Deficient Patients by Two-Dimensional Gel Electrophoresis: Evidence for Posttranslational Modification of the Enzyme. Biochemical Medicine and Metabolic Biology, 1994, 52, 36-44.	0.7	12
116	Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1182, 264-274.	3.8	64
117	Medium-Chain Acyl-CoA Dehydrogenase (MCAD) Deficiency: The Prevalent Mutation G985 (K304E) Is Subject to a Strong Founder Effect from Northwestern Europe. Human Heredity, 1993, 43, 342-350.	0.8	75
118	Expression of wild-type and mutant medium-chain acyl-CoA dehydrogenase (MCAD) cDNA in eucaryotic cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1992, 1180, 65-72.	3.8	26
119	The adsorption protein of phage IKe. Localization by deletion mutagenesis of domains involved in infectivity. Molecular Microbiology, 1992, 6, 471-478.	2.5	15
120	Release of periplasmic proteins induced inE. coliby expression of an N-terminal proximal segment of the phage fd gene 3 protein. FEBS Letters, 1991, 280, 27-31.	2.8	13
121	Characterization of a disease-causing Lys329 to Glu mutation in 16 patients with medium-chain Acyl-CoA dehydrogenase deficiency. Journal of Inherited Metabolic Disease, 1991, 14, 314-316.	3.6	11
122	Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: identification of a lys329 to glu mutation in the MCAD gene, and expression of inactive mutant enzyme protein in E. coli. Human Genetics, 1991, 86, 545-51.	3.8	66
123	Dissection of functional domains in phage fd adsorption protein. Journal of Molecular Biology, 1990, 212, 143-149.	4.2	115