Francisco J Schopfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2167956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrolinoleic acid: An endogenous peroxisome proliferator-activated receptor ligand. Proceedings of the United States of America, 2005, 102, 2340-2345.	7.1	400
2	NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response?. Trends in Biochemical Sciences, 2003, 28, 646-654.	7.5	339
3	Fatty Acid Transduction of Nitric Oxide Signaling. Journal of Biological Chemistry, 2005, 280, 42464-42475.	3.4	323
4	Nitrated Fatty Acids: Endogenous Anti-inflammatory Signaling Mediators*. Journal of Biological Chemistry, 2006, 281, 35686-35698.	3.4	318
5	Formation and Signaling Actions of Electrophilic Lipids. Chemical Reviews, 2011, 111, 5997-6021.	47.7	280
6	Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nature Chemical Biology, 2010, 6, 433-441.	8.0	253
7	Reversible Post-translational Modification of Proteins by Nitrated Fatty Acids in Vivo. Journal of Biological Chemistry, 2006, 281, 20450-20463.	3.4	248
8	Red cell membrane and plasma linoleic acid nitration products: Synthesis, clinical identification, and quantitation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11577-11582.	7.1	193
9	Electrophilic Nitro-fatty Acids Activate NRF2 by a KEAP1 Cysteine 151-independent Mechanism. Journal of Biological Chemistry, 2011, 286, 14019-14027.	3.4	182
10	Nitro-fatty Acid Reaction with Glutathione and Cysteine. Journal of Biological Chemistry, 2007, 282, 31085-31093.	3.4	176
11	Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovascular Research, 2010, 85, 155-166.	3.8	171
12	Fatty Acid Transduction of Nitric Oxide Signaling. Journal of Biological Chemistry, 2005, 280, 19289-19297.	3.4	167
13	Covalent Peroxisome Proliferator-activated Receptor Î ³ Adduction by Nitro-fatty Acids. Journal of Biological Chemistry, 2010, 285, 12321-12333.	3.4	151
14	Nrf2-dependent and -independent Responses to Nitro-fatty Acids in Human Endothelial Cells. Journal of Biological Chemistry, 2009, 284, 33233-33241.	3.4	150
15	Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7768-E7775.	7.1	150
16	Conjugated Linoleic Acid Is a Preferential Substrate for Fatty Acid Nitration. Journal of Biological Chemistry, 2012, 287, 44071-44082.	3.4	131
17	Nitro-Oleic Acid Inhibits Angiotensin II–Induced Hypertension. Circulation Research, 2010, 107, 540-548.	4.5	114
18	Nitrolinoleate, a nitric oxide-derived mediator of cell function: Synthesis, characterization, and vasomotor activity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15941-15946.	7.1	111

FRANCISCO J SCHOPFER

#	Article	IF	CITATIONS
19	Nitro-fatty Acid Metabolome: Saturation, Desaturation, β-Oxidation, and Protein Adduction. Journal of Biological Chemistry, 2009, 284, 1461-1473.	3.4	103
20	Olives and Olive Oil Are Sources of Electrophilic Fatty Acid Nitroalkenes. PLoS ONE, 2014, 9, e84884.	2.5	102
21	Nitro–Fatty Acids Reduce Atherosclerosis in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 938-945.	2.4	99
22	Electrophilic nitro-fatty acids inhibit vascular inflammation by disrupting LPS-dependent TLR4 signalling in lipid rafts. Cardiovascular Research, 2013, 98, 116-124.	3.8	98
23	Macrophage activation induces formation of the anti-inflammatory lipid cholesteryl-nitrolinoleate. Biochemical Journal, 2009, 417, 223-238.	3.7	78
24	Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes. Free Radical Biology and Medicine, 2015, 89, 333-341.	2.9	78
25	Nitro-oleic Acid, a Novel and Irreversible Inhibitor of Xanthine Oxidoreductase. Journal of Biological Chemistry, 2008, 283, 36176-36184.	3.4	75
26	Cytochrome b5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and cGMP Signaling. Circulation Research, 2017, 121, 137-148.	4.5	73
27	Nitro-fatty acids: New drug candidates for chronic inflammatory and fibrotic diseases. Nitric Oxide - Biology and Chemistry, 2018, 79, 31-37.	2.7	71
28	Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine. Journal of Lipid Research, 2013, 54, 1998-2009.	4.2	70
29	Activation of vascular endothelial nitric oxide synthase and heme oxygenase-1 expression by electrophilic nitro-fatty acids. Free Radical Biology and Medicine, 2010, 48, 230-239.	2.9	69
30	Nitro-Fatty Acid Inhibition of Neointima Formation After Endoluminal Vessel Injury. Circulation Research, 2009, 105, 965-972.	4.5	66
31	Modulation of Nitro-fatty Acid Signaling. Journal of Biological Chemistry, 2013, 288, 25626-25637.	3.4	65
32	STING palmitoylation as a therapeutic target. Cellular and Molecular Immunology, 2019, 16, 236-241.	10.5	57
33	Convergence of biological nitration and nitrosation via symmetrical nitrous anhydride. Nature Chemical Biology, 2015, 11, 504-510.	8.0	55
34	In situ generation, metabolism and immunomodulatory signaling actions of nitro-conjugated linoleic acid in a murine model of inflammation. Redox Biology, 2018, 15, 522-531.	9.0	55
35	Nitrated fatty acids: synthesis and measurement. Free Radical Biology and Medicine, 2013, 59, 14-26.	2.9	52
36	The Chemical Basis of Thiol Addition to Nitro-conjugated Linoleic Acid, a Protective Cell-signaling Lipid. Journal of Biological Chemistry, 2017, 292, 1145-1159.	3.4	48

#	Article	IF	CITATIONS
37	Generation and Dietary Modulation of Anti-Inflammatory Electrophilic Omega-3 Fatty Acid Derivatives. PLoS ONE, 2014, 9, e94836.	2.5	48
38	Electrophilic fatty acid nitroalkenes regulate Nrf2 and NF-κB signaling:A medicinal chemistry investigation of structure-function relationships. Scientific Reports, 2018, 8, 2295.	3.3	43
39	Nitro-fatty acids in cardiovascular regulation and diseases characteristics and molecular mechanisms. Frontiers in Bioscience - Landmark, 2016, 21, 873-889.	3.0	42
40	Nitro-fatty acid pharmacokinetics in the adipose tissue compartment. Journal of Lipid Research, 2017, 58, 375-385.	4.2	41
41	Nitro-Fatty Acid Logistics: Formation, Biodistribution, Signaling, and Pharmacology. Trends in Endocrinology and Metabolism, 2019, 30, 505-519.	7.1	39
42	Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E180-E195.	3.5	36
43	CMPF, a Metabolite Formed Upon Prescription Omega-3-Acid Ethyl Ester Supplementation, Prevents and Reverses Steatosis. EBioMedicine, 2018, 27, 200-213.	6.1	35
44	Electrophilic fatty acid nitroalkenes are systemically transported and distributed upon esterification to complex lipids. Journal of Lipid Research, 2019, 60, 388-399.	4.2	33
45	Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis. Redox Biology, 2019, 21, 101050.	9.0	33
46	Nitro-oleic acid, a ligand of CD36, reduces cholesterol accumulation by modulating oxidized-LDL uptake and cholesterol efflux in RAW264.7 macrophages. Redox Biology, 2020, 36, 101591.	9.0	33
47	The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling. Nitric Oxide - Biology and Chemistry, 2018, 77, 106-111.	2.7	31
48	Inhibition of Mycobacterium tuberculosis PknG by non-catalytic rubredoxin domain specific modification: reaction of an electrophilic nitro-fatty acid with the Fe–S center. Free Radical Biology and Medicine, 2013, 65, 150-161.	2.9	30
49	Generation and esterification of electrophilic fatty acid nitroalkenes in triacylglycerides. Free Radical Biology and Medicine, 2015, 87, 113-124.	2.9	29
50	Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II. Redox Biology, 2016, 8, 1-10.	9.0	28
51	Nrf2 prevents Notch-induced insulin resistance and tumorigenesis in mice. JCI Insight, 2018, 3, .	5.0	27
52	Evaluation of 10-Nitro Oleic Acid Bio-Elimination in Rats and Humans. Scientific Reports, 2017, 7, 39900.	3.3	25
53	Nitrated fatty acids: from diet to disease. Current Opinion in Physiology, 2019, 9, 67-72.	1.8	21
54	CXA-10, a Nitrated Fatty Acid, Is Renoprotective in Deoxycorticosterone Acetate-Salt Nephropathy. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 503-510.	2.5	20

FRANCISCO J SCHOPFER

#	Article	IF	CITATIONS
55	Nitro-oleic acid triggers ROS production via NADPH oxidase activation in plants: A pharmacological approach. Journal of Plant Physiology, 2020, 246-247, 153128.	3.5	20
56	Gas-Phase Fragmentation Analysis of Nitro-Fatty Acids. Journal of the American Society for Mass Spectrometry, 2011, 22, 1534-51.	2.8	19
57	Biomimetic Nitration of Conjugated Linoleic Acid: Formation and Characterization of Naturally Occurring Conjugated Nitrodienes. Journal of Organic Chemistry, 2014, 79, 25-33.	3.2	19
58	Novel gene regulatory networks identified in response to nitro-conjugated linoleic acid in human endothelial cells. Physiological Genomics, 2019, 51, 224-233.	2.3	15
59	Mass spectrometry-based study defines the human urine nitrolipidome. Free Radical Biology and Medicine, 2021, 162, 327-337.	2.9	14
60	Cooperation between CYB5R3 and NOX4 via coenzyme Q mitigates endothelial inflammation. Redox Biology, 2021, 47, 102166.	9.0	13
61	Electrophilic nitroalkene-tocopherol derivatives: synthesis, physicochemical characterization and evaluation of anti-inflammatory signaling responses. Scientific Reports, 2018, 8, 12784.	3.3	12
62	Vascepa protects against high-fat diet-induced glucose intolerance, insulin resistance, and impaired β-cell function. IScience, 2021, 24, 102909.	4.1	12
63	Topical electrophilic nitro-fatty acids potentiate cutaneous inflammation. Free Radical Biology and Medicine, 2018, 115, 31-42.	2.9	11
64	Electrophilic nitro-fatty acids suppress psoriasiform dermatitis: STAT3 inhibition as a contributory mechanism. Redox Biology, 2021, 43, 101987.	9.0	11
65	A novel nitroalkeneâ€Î±â€ŧocopherol analogue inhibits inflammation and ameliorates atherosclerosis in Apo E knockout mice. British Journal of Pharmacology, 2019, 176, 757-772.	5.4	9
66	Suppression of Vascular Macrophage Activation by Nitro-Oleic Acid and its Implication for Abdominal Aortic Aneurysm Therapy. Cardiovascular Drugs and Therapy, 2021, 35, 939-951.	2.6	9
67	Sulfenic acid in human serum albumin: Reaction with thiols, oxidation and spontaneous decay. Free Radical Biology and Medicine, 2021, 165, 254-264.	2.9	8
68	Endogenous generation of nitro-fatty acid hybrids having dual nitrate ester (RONO2) and nitroalkene (RNO2) substituents. Redox Biology, 2021, 41, 101913.	9.0	8
69	Evaluation of 2â€Thiothiazolidineâ€4â€Carboxylic Acid, a Common Metabolite of Isothiocyanates, as a Potential Biomarker of Cruciferous Vegetable Intake. Molecular Nutrition and Food Research, 2019, 63, e1801029.	3.3	7
70	Exogenous Nitro-Oleic Acid Treatment Inhibits Primary Root Growth by Reducing the Mitosis in the Meristem in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 1059.	3.6	6
71	Synthesis of an electrophilic keto-tetraene 15-oxo-Lipoxin A4 methyl ester via a MIDA boronate. Tetrahedron Letters, 2018, 59, 3524-3527.	1.4	4
72	Nitro-fatty acids: electrophilic signaling molecules in plant physiology. Planta, 2021, 254, 120.	3.2	4

FRANCISCO J SCHOPFER

#	Article	IF	CITATIONS
73	Immunomodulatory actions of a kynurenine-derived endogenous electrophile. Science Advances, 2022, 8, .	10.3	4
74	Nitro-oleic acid and epoxyoleic acid are not altered in obesity and Type 2 diabetes: reply. Cardiovascular Research, 2014, 102, 518-518.	3.8	2
75	Synthesis of 9- and 12-nitro conjugated linoleic acid: Regiospecific isomers of naturally occurring conjugated nitrodienes. Tetrahedron Letters, 2021, 81, 153371.	1.4	1
76	Glutathione transferase catalyzes the addition of glutathione to nitro onjugated linoleic acid. FASEB Journal, 2019, 33, 633.29.	0.5	1
77	Electrophilic nitroâ€fatty acids inhibit vascular inflammation. FASEB Journal, 2013, 27, 920.10.	0.5	0
78	Electrophilic Nitroâ€Fatty Acids Exert Cardioprotection against Hypertrophic Remodeling and Fibrosis in Pressure Overloaded Mice. FASEB Journal, 2015, 29, 640.6.	0.5	0
79	Thiol modification and signaling by biological electrophiles. , 2022, , 177-196.		0