Lorenzo Valdevit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2167484/publications.pdf

Version: 2024-02-01

68 papers

4,478 citations

147801 31 h-index 60 g-index

73 all docs

73 docs citations

times ranked

73

4377 citing authors

#	Article	IF	CITATIONS
1	Alleviating expansion-induced mechanical degradation in lithium-ion battery silicon anodes via morphological design. Extreme Mechanics Letters, 2022, 54, 101746.	4.1	9
2	Minimal Surfaceâ€Based Materials for Topological Elastic Wave Guiding. Advanced Functional Materials, 2022, 32, .	14.9	7
3	Damage tolerance in additively manufactured ceramic architected materials. Journal of the European Ceramic Society, 2022, 42, 5893-5903.	5.7	2
4	Mechanically Compliant Thermal Interfaces Using Biporous Copperâ€Polydimethylsiloxane Interpenetrating Phase Composite. Advanced Materials Interfaces, 2021, 8, .	3.7	5
5	Tensegrity Metamaterials: Toward Failureâ€Resistant Engineering Systems through Delocalized Deformation. Advanced Materials, 2021, 33, e2005647.	21.0	37
6	Nanoscale investigation of two-photon polymerized microstructures with tip-enhanced Raman spectroscopy. JPhys Photonics, 2021, 3, 024001.	4.6	3
7	Tensegrity Metamaterials: Tensegrity Metamaterials: Toward Failureâ€Resistant Engineering Systems through Delocalized Deformation (Adv. Mater. 10/2021). Advanced Materials, 2021, 33, 2170077.	21.0	0
8	Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies. Composite Structures, 2021, 263, 113693.	5.8	57
9	Thickness-Dependent Microstructure in Additively Manufactured Stainless Steel. Journal of Materials Engineering and Performance, 2021, 30, 6606-6617.	2.5	2
10	Architected implant designs for long bones: Advantages of minimal surface-based topologies. Materials and Design, 2021, 207, 109838.	7.0	33
11	Fabrication of 3D micro-/nanoarchitected materials. , 2020, , 541-576.		2
12	Magnetoelastic Metamaterials for Energy Dissipation and Wave Filtering. Advanced Engineering Materials, 2020, 22, 1901019.	3.5	23
13	Minisurf – A minimal surface generator for finite element modeling and additive manufacturing. Software Impacts, 2020, 6, 100026.	1.4	19
14	A versatile numerical approach for calculating the fracture toughness and R-curves of cellular materials. Journal of the Mechanics and Physics of Solids, 2020, 138, 103925.	4.8	23
15	Plate-nanolattices at the theoretical limit of stiffness and strength. Nature Communications, 2020, 11 , 1579.	12.8	85
16	Surface oxide and hydroxide effects on aluminum microparticle impact bonding. Acta Materialia, 2020, 197, 28-39.	7.9	32
17	Thermal post-curing as an efficient strategy to eliminate process parameter sensitivity in the mechanical properties of two-photon polymerized materials. Optics Express, 2020, 28, 20362.	3.4	20
18	Thermal Conductivity Measurement of Mesoscale Lattices Using Steady-State Infrared Thermography. , 2019, , .		0

#	Article	IF	CITATIONS
19	Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics. Matter, 2019, 1, 1547-1556.	10.0	58
20	Thermal transport in hollow metallic microlattices. APL Materials, 2019, 7, .	5.1	16
21	Multiscale modeling and optimization of the mechanics of hierarchical metamaterials. MRS Bulletin, 2019, 44, 773-781.	3.5	40
22	Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures. Small, 2019, 15, e1903834.	10.0	38
23	Programmable Mechanical Properties of Twoâ€Photon Polymerized Materials: From Nanowires to Bulk. Advanced Materials Technologies, 2019, 4, 1900146.	5.8	65
24	Negative-Stiffness Inclusions as a Platform for Real-Time Tunable Phononic Metamaterials. Physical Review Applied, 2019, 11, .	3.8	20
25	Scalable synthesis of gyroid-inspired freestanding three-dimensional graphene architectures. Nanoscale Advances, 2019, 1, 3870-3882.	4.6	17
26	The mechanical response of cellular materials with spinodal topologies. Journal of the Mechanics and Physics of Solids, 2019, 125, 401-419.	4.8	86
27	In-situ monitoring and quality control for in-space additive manufacturing using laser acoustical resonance spectroscopy., 2019,,.		1
28	The effect of manufacturing defects on compressive strength of ultralight hollow microlattices: A data-driven study. Additive Manufacturing, 2018, 19, 51-61.	3.0	17
29	Damping of selectively bonded 3D woven lattice materials. Scientific Reports, 2018, 8, 14572.	3.3	7
30	A Tri-Leaflet Nitinol Mesh Scaffold for Engineering Heart Valves. Annals of Biomedical Engineering, 2017, 45, 413-426.	2.5	8
31	Elastic architected materials with extreme damping capacity. Extreme Mechanics Letters, 2017, 17, 56-61.	4.1	57
32	Optimal design of a cellular material encompassing negative stiffness elements for unique combinations of stiffness and elastic hysteresis. Materials and Design, 2017, 135, 37-50.	7.0	42
33	Nanolattices: An Emerging Class of Mechanical Metamaterials. Advanced Materials, 2017, 29, 1701850.	21.0	356
34	Topology optimization of multiphase architected materials for energy dissipation. Computer Methods in Applied Mechanics and Engineering, 2017, 325, 314-329.	6.6	37
35	3D manufacturing of micro and nano-architected materials. , 2016, , .		2
36	Architected Materials: Multistable Shape-Reconfigurable Architected Materials (Adv. Mater. 36/2016). Advanced Materials, 2016, 28, 8065-8065.	21.0	15

#	Article	IF	Citations
37	Multistable Shapeâ€Reconfigurable Architected Materials. Advanced Materials, 2016, 28, 7915-7920.	21.0	292
38	Fabrication of 3D Micro-Architected/Nano-Architected Materials. , 2016, , 345-373.		8
39	Novel insights from 3D models: the pivotal role of physical symmetry in epithelial organization. Scientific Reports, 2015, 5, 15153.	3.3	8
40	Topology optimization of lightweight periodic lattices under simultaneous compressive and shear stiffness constraints. International Journal of Solids and Structures, 2015, 60-61, 1-16.	2.7	33
41	Macroscopic strain controlled ion current in an elastomeric microchannel. Journal of Applied Physics, 2015, 117, 174904.	2.5	0
42	Push-to-pull tensile testing of ultra-strong nanoscale ceramic–polymer composites made by additive manufacturing. Extreme Mechanics Letters, 2015, 3, 105-112.	4.1	69
43	Incorporating fabrication cost into topology optimization of discrete structures and lattices. Structural and Multidisciplinary Optimization, 2015, 51, 385-396.	3.5	52
44	Energy dissipation mechanisms in hollow metallic microlattices. Journal of Materials Research, 2014, 29, 1755-1770.	2.6	73
45	Accurate Stiffness Measurement of Ultralight Hollow Metallic Microlattices by Laser Vibrometry. Experimental Mechanics, 2014, 54, 1491-1495.	2.0	11
46	Fabrication and Deformation of Metallic Glass Microâ€Lattices. Advanced Engineering Materials, 2014, 16, 889-896.	3.5	50
47	Glass-blown Pyrex resonator with compensating Ti coating for reduction of TCF. , 2014, , .		3
48	Emergence of film-thickness- and grain-size-dependent elastic properties in nanocrystalline thin films. Scripta Materialia, 2013, 68, 261-264.	5.2	14
49	Compressive strength of hollow microlattices: Experimental characterization, modeling, and optimal design. Journal of Materials Research, 2013, 28, 2461-2473.	2.6	96
50	Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery. APL Materials, $2013,1,.$	5.1	68
51	A Novel Modeling Platform for Characterization and Optimal Design of Micro-Architected Materials. , 2012, , .		3
52	Ultrahigh-Dynamic-Range Resonant MEMS Load Cells for Micromechanical Test Frames. Journal of Microelectromechanical Systems, 2012, 21, 1519-1529.	2.5	14
53	Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Materialia, 2012, 60, 3511-3523.	7.9	182
54	Catastrophic vs Gradual Collapse of Thin-Walled Nanocrystalline Ni Hollow Cylinders As Building Blocks of Microlattice Structures. Nano Letters, 2011, 11, 4118-4125.	9.1	34

#	Article	IF	CITATIONS
55	Mechanical characterizations of cast Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Polyvinyl Alcohol thin films. Synthetic Metals, 2011, 161, 2259-2267.	3.9	78
56	Implications of shakedown for design of actively cooled thermostructural panels. Journal of Mechanics of Materials and Structures, 2011, 6, 1313-1327.	0.6	14
57	Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel. PLoS ONE, 2011, 6, e20201.	2.5	76
58	Protocols for the Optimal Design of Multiâ€Functional Cellular Structures: From Hypersonics to Microâ€Architected Materials. Journal of the American Ceramic Society, 2011, 94, s15.	3.8	113
59	Ultralight Metallic Microlattices. Science, 2011, 334, 962-965.	12.6	1,389
60	Pressure-Induced Amorphization in Silicon Caused by the Impact of Electrosprayed Nanodroplets. Physical Review Letters, 2010, 105, 145701.	7.8	38
61	Feasibility of Metallic Structural Heat Pipes as Sharp Leading Edges for Hypersonic Vehicles. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	2.2	44
62	A Materials Selection Protocol for Lightweight Actively Cooled Panels. Journal of Applied Mechanics, Transactions ASME, 2008, 75, .	2.2	47
63	Design and Implementation of Actively Cooled Panels for Scramjets. , 2007, , 191.		1
64	The Design Space of Superalloy-Based Actively Cooled Combustor Walls for H2-Powered Hypersonic Vehicles., 2007,, 199.		0
65	Metallic Structural Heat Pipes as Sharp Leading Edges for Mach 7 Vehicles. , 2007, , .		3
66	Structural performance of near-optimal sandwich panels with corrugated cores. International Journal of Solids and Structures, 2006, 43, 4888-4905.	2.7	105
67	Optimal active cooling performance of metallic sandwich panels with prismatic cores. International Journal of Heat and Mass Transfer, 2006, 49, 3819-3830.	4.8	91
68	Active cooling by metallic sandwich structures with periodic cores. Progress in Materials Science, 2005, 50, 789-815.	32.8	211