Ketil Hylland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/216747/publications.pdf Version: 2024-02-01

KETH HVILAND

#	Article	IF	CITATIONS
1	Polycyclic Aromatic Hydrocarbon (PAH) Ecotoxicology in Marine Ecosystems. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2006, 69, 109-123.	2.3	282
2	Characterization of the effluent from a nanosilver producing washing machine. Environment International, 2011, 37, 1057-1062.	10.0	230
3	Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level. Environmental Pollution, 2018, 243, 1217-1225.	7.5	195
4	Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Science of the Total Environment, 2019, 696, 133792.	8.0	184
5	Environmentally relevant microplastic exposure affects sediment-dwelling bivalves. Environmental Pollution, 2018, 236, 652-660.	7.5	147
6	Development of sediment quality criteria in Norway. Journal of Soils and Sediments, 2010, 10, 172-178.	3.0	144
7	Water column monitoring near oil installations in the North Sea 2001–2004. Marine Pollution Bulletin, 2008, 56, 414-429.	5.0	103
8	Experimental results on bioaccumulation of metals and organic contaminants from marine sediments. Aquatic Toxicology, 2005, 72, 273-292.	4.0	85
9	Contaminants in marine ecosystems: developing an integrated indicator framework using biological-effect techniques. ICES Journal of Marine Science, 2008, 65, 1508-1514.	2.5	82
10	Integrated indicator framework and methodology for monitoring and assessment of hazardous substances and their effects in the marine environment. Marine Environmental Research, 2017, 124, 11-20.	2.5	77
11	Biomarkers in Natural Fish Populations Indicate Adverse Biological Effects of Offshore Oil Production. PLoS ONE, 2011, 6, e19735.	2.5	68
12	Detection of endocrine disrupters: Evaluation of a Fish Sexual Development Test (FSDT). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 144, 57-66.	2.6	62
13	Vitellogenin in the blood plasma of male cod (Gadus morhua): A sign of oestrogenic endocrine disruption in the open sea?. Marine Environmental Research, 2006, 61, 149-170.	2.5	53
14	Spatial diastereomer patterns of hexabromocyclododecane (HBCD) in a Norwegian fjord. Science of the Total Environment, 2009, 407, 5907-5913.	8.0	46
15	Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (Scophthalmus maximus) exposed to Cd, Cu, Zn and after a depuration treatment. Aquatic Toxicology, 2006, 77, 64-77.	4.0	45
16	Detection of DNA damage in haemocytes of Mytilus galloprovincialis in the coastal ecosystems of KaÅ _l tela and Trogir bays, Croatia. Science of the Total Environment, 2008, 405, 330-337.	8.0	45
17	Environmental indicators: utility in meeting regulatory needs. An overview. ICES Journal of Marine Science, 2008, 65, 1381-1386.	2.5	43
18	Diastereomer-specific bioaccumulation of hexabromocyclododecane (HBCD) in a coastal food web, Western Norway. Science of the Total Environment, 2010, 408, 5910-5916.	8.0	42

#	Article	IF	CITATIONS
19	May Organic Pollutants Affect Fish Populations in the North Sea?. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2006, 69, 125-138.	2.3	41
20	Assessment of contaminant concentrations in sediments, fish and mussels sampled from the North Atlantic and European regional seas within the ICON project. Marine Environmental Research, 2017, 124, 21-31.	2.5	41
21	Higher faecal excretion and lower tissue accumulation of mercury in Wistar rats from contaminated fish than from methylmercury chloride added to fish. Food and Chemical Toxicology, 2004, 42, 1359-1366.	3.6	39
22	Genotoxicity monitoring of freshwater environments using caged carp (Cyprinus carpio). Ecotoxicology, 2010, 19, 77-84.	2.4	38
23	Pristine Arctic: Background mapping of PAHs, PAH metabolites and inorganic trace elements in the North-Atlantic Arctic and sub-Arctic coastal environment. Science of the Total Environment, 2014, 493, 719-728.	8.0	36
24	Disposition of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in two Norwegian epibenthic marine food webs. Chemosphere, 2006, 62, 1856-1868.	8.2	35
25	Alterations in the energy budget of Arctic benthic species exposed to oil-related compounds. Aquatic Toxicology, 2007, 83, 85-92.	4.0	35
26	Cytotoxicity of atorvastatin and simvastatin on primary rainbow trout (Oncorhynchus mykiss) hepatocytes. Toxicology in Vitro, 2010, 24, 1610-1618.	2.4	34
27	How can we quantify impacts of contaminants in marine ecosystems? The ICON project. Marine Environmental Research, 2017, 124, 2-10.	2.5	33
28	Polycyclic Aromatic Hydrocarbon (PAH) Metabolites in Atlantic Cod Exposed via Water or Diet to a Synthetic Produced Water. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 254-265.	2.3	32
29	Species-dependent sensitivity to contaminants: An approach using primary hepatocyte cultures with three marine fish species. Marine Environmental Research, 2011, 72, 216-224.	2.5	32
30	Biomarkers of general stress in mussels as common indicators for marine biomonitoring programmes in Europe: The ICON experience. Marine Environmental Research, 2017, 124, 70-80.	2.5	32
31	Expert opinion on toxicity profiling—report from a NORMAN expert group meeting. Integrated Environmental Assessment and Management, 2013, 9, 185-191.	2.9	31
32	A study of metal concentrations and metallothionein binding capacity in liver, kidney and brain tissues of three Arctic seal species. Science of the Total Environment, 2009, 407, 6166-6172.	8.0	30
33	Genotoxicity of Environmentally Relevant Concentrations of Water-Soluble Oil Components in Cod (<i>Gadus morhua</i>). Environmental Science & Technology, 2009, 43, 3329-3334.	10.0	30
34	Integrated chemical and biological assessment of contaminant impacts in selected European coastal and offshore marine areas. Marine Environmental Research, 2017, 124, 130-138.	2.5	30
35	Relationship Between Polycyclic Aromatic Hydrocarbon (PAH) Accumulation in Semipermeable Membrane Devices and PAH Bile Metabolite Levels in Atlantic Cod (<i>Gadus morhua</i>). Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 234-243.	2.3	27
36	Contaminant accumulation and biological responses in Atlantic cod (Gadus morhua) caged at a capped waste disposal site in Kollevåg, Western Norway. Marine Environmental Research, 2019, 145, 39-51.	2.5	25

#	Article	IF	CITATIONS
37	Integrated monitoring of chemicals and their effects on four sentinel species, Limanda limanda, Platichthys flesus, Nucella lapillus and Mytilus sp., in Seine Bay: A key step towards applying biological effects to monitoring. Marine Environmental Research, 2017, 124, 92-105.	2.5	22
38	The influence of dissolved organic carbon and ultraviolet radiation on the genomic integrity of <i>Daphnia magna</i> . Functional Ecology, 2017, 31, 848-855.	3.6	22
39	Cadmium accumulation and Cd-binding proteins in marine invertebrates—A radiotracer study. Chemosphere, 2005, 61, 1651-1664.	8.2	21
40	Accumulation of polychlorinated biphenyls from contaminated sediment by Atlantic cod (<i>Gadus) Tj ETQq0 (polychaete <i>Nereis virens</i>. Environmental Toxicology and Chemistry, 2012, 31, 2472-2481.</i>) 0 rgBT /0 4.3	verlock 10 Tf 5 21
41	Dietary vitamin A supplementation ameliorates the effects of poly-aromatic hydrocarbons in Atlantic salmon (Salmo salar). Aquatic Toxicology, 2016, 175, 171-183.	4.0	21
42	Biological effects in the management of chemicals in the marine environment. Marine Pollution Bulletin, 2006, 53, 614-619.	5.0	20
43	Relationships Between Physiology, Tissue Contaminants, and Biomarker Responses in Atlantic Cod (<i>Gadus morhua</i> L.). Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 226-233.	2.3	20
44	Long-term exposure of Atlantic cod (Gadus morhua) to components of produced water: condition, gonad maturation, and gene expression. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1685-1698.	1.4	20
45	Atorvastatin up-regulate toxicologically relevant genes in rainbow trout gills. Ecotoxicology, 2012, 21, 1841-1856.	2.4	19
46	Use of fish in vitro hepatocyte assays to detect multi-endpoint toxicity in Slovenian river sediments. Marine Environmental Research, 2006, 62, S356-S359.	2.5	18
47	Assessing environmental quality status by integrating chemical and biological effect data: The Cartagena coastal zone as a case. Marine Environmental Research, 2017, 124, 106-117.	2.5	18
48	Baseline and oxidative DNA damage in marine invertebrates. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 807-819.	2.3	18
49	Bioaccumulation and lack of oxidative stress response in the ragworm H. diversicolor following exposure to 226Ra in sediment. Journal of Environmental Radioactivity, 2009, 100, 429-434.	1.7	17
50	Low impact of exposure to environmentally relevant doses of 226Ra in Atlantic cod (Gadus morhua) embryonic cells. Journal of Environmental Radioactivity, 2012, 109, 84-93.	1.7	14
51	Disposition of arsenobetaine in two marine fish species following administration of a single oral dose of [14C]arsenobetaine. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 143, 171-178.	2.6	13
52	Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Dibenzofurans (PCDFs) in the Grenland Fjords (Norway)—Disposition, Levels, and Effects. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2006, 69, 185-200.	2.3	13
53	Cellular Energy Allocation in <i>Hediste diversicolor</i> Exposed to Sediment Contaminants. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 244-253.	2.3	13
54	Ecotoxicity of paint mixtures: Comparison between measured and calculated toxicity. Science of the Total Environment, 2012, 435-436, 526-540.	8.0	13

#	Article	IF	CITATIONS
55	DNA damage in dab (Limanda limanda) and haddock (Melanogrammus aeglefinus) from European seas. Marine Environmental Research, 2017, 124, 54-60.	2.5	13
56	DNA damage in Arctic seabirds: Baseline, sensitivity to a genotoxic stressor, and association with organohalogen contaminants. Environmental Toxicology and Chemistry, 2018, 37, 1084-1091.	4.3	13
57	Predation Risk Potentiates Toxicity of a Common Metal Contaminant in a Coastal Copepod. Environmental Science & Technology, 2018, 52, 13535-13542.	10.0	13
58	Testing REACH draft technical guidance notes for conducting chemical safety assessments—The experience of a downstream user of a preparation. Regulatory Toxicology and Pharmacology, 2008, 51, 168-180.	2.7	12
59	Seabird-Transported Contaminants Are Reflected in the Arctic Tundra, But Not in Its Soil-Dwelling Springtails (Collembola). Environmental Science & Technology, 2019, 53, 12835-12845.	10.0	11
60	Persistent organic pollutant concentrations in fledglings of two arctic seabird species. Environmental Pollution, 2014, 184, 414-418.	7.5	9
61	Bioavailability of hexabromocyclododecane to the polychaete <i>Hediste diversicolor</i> : Exposure through sediment and food from a contaminated fjord. Environmental Toxicology and Chemistry, 2010, 29, 1709-1715.	4.3	8
62	Genotoxic Response and Mortality in 3 Marine Copepods Exposed to Waterborne Copper. Environmental Toxicology and Chemistry, 2019, 38, 2224-2232.	4.3	8
63	Accumulation of Polychlorinated Dibenzo- <i>p</i> Dioxins and Furans in Atlantic Cod (<i>Gadus) Tj ETQq1 1 C Health - Part A: Current Issues, 2011, 74, 455-465.</i>).784314 rgl 2.3	BT /Overlock 7
64	Characterization of AhR agonist compounds in roadside snow. Analytical and Bioanalytical Chemistry, 2012, 403, 2047-2056.	3.7	7
65	A multi-generation Calanus finmarchicus culturing system for use in long-term oil exposure experiments. Journal of Experimental Marine Biology and Ecology, 2006, 333, 71-78.	1.5	6
66	Reactive Oxygen Species and Cytotoxicity in Rainbow Trout Hepatocytes: Effects of Medium and Incubation Time. Bulletin of Environmental Contamination and Toxicology, 2015, 94, 193-198.	2.7	6
67	Metallothionein levels in willow ptarmigan (Lagopus lagopus) populations with different natural loads of cadmium. European Journal of Wildlife Research, 2007, 53, 142-152.	1.4	4
68	Comment on "Contaminant levels in Norwegian farmed Atlantic salmon (Salmo salar) in the 13-year period from 1999 to 2011―by NÃ,stbakken et al Environment International, 2015, 80, 98-99.	10.0	4
69	Environmentally realistic exposure to weathered North Sea oil: Sublethal effects in Atlantic cod (<i>Gadus morhua</i>) and turbot (<i>Scophthalmus maximus</i>). Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 895-906.	2.3	4
70	Environmental Adaptive Management: Application on Submarine Mine Tailings Disposal. Integrated Environmental Assessment and Management, 2019, 15, 575-583.	2.9	4
71	Sublethal effects of contaminated sediment on Arenicola marina. Journal of Soils and Sediments, 2012, 12, 921-932.	3.0	2
72	Lack of response in a marine pelagic community to short-term oil and contaminant exposure. Journal of Experimental Marine Biology and Ecology, 2012, 416-417, 110-114.	1.5	2

#	Article	IF	CITATIONS
73	REACH exposure assessment of anticorrosive paint products – Determination of exposure from application and service life to the aquatic environment. Regulatory Toxicology and Pharmacology, 2011, 61, 332-339.	2.7	1
74	Release of emamectin from sediment: effects of oil, organic material or infauna?. Journal of Soils and Sediments, 2014, 14, 1469-1478.	3.0	1
75	2nd Norwegian Environmental Toxicology Symposium: Joining Forces for an Integrated Search for Environmental Solutions. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 111-111.	2.3	0
76	Insights on Ecotoxicological Effects of Microplastics in Marine Ecosystems: The EPHEMARE Project. Springer Water, 2020, , 12-19.	0.3	0