
Tomoki Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2167340/publications.pdf Version: 2024-02-01

Τομοκι Νλκλμιβλ

#	Article	IF	CITATIONS
1	Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science, 2023, 379, .	12.6	97
2	Spectral and mineralogical alteration process of naturally-heated CM and CY chondrites. Geochimica Et Cosmochimica Acta, 2022, 316, 150-167.	3.9	6
3	Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets. Earth, Planets and Space, 2022, 74, .	2.5	51
4	Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth. Science, 2022, 375, 1011-1016.	12.6	78
5	Multiscale correlated analysis of the Aguas Zarcas CM chondrite. Meteoritics and Planetary Science, 2022, 57, 965-988.	1.6	4
6	Sr distribution as proxy for Ca distribution at depth in SXRF analysis of mmâ€sized carbonaceous chondrites: Implications for asteroid sample return missions. Meteoritics and Planetary Science, 2022, 57, 817-829.	1.6	3
7	Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nature Astronomy, 2022, 6, 214-220.	10.1	136
8	Site selection for the Hayabusa2 artificial cratering and subsurface material sampling on Ryugu. Planetary and Space Science, 2022, 219, 105519.	1.7	4
9	NIRS3 spectral analysis of the artificial Omusubi-Kororin crater on Ryugu. Monthly Notices of the Royal Astronomical Society, 2022, 514, 6173-6182.	4.4	1
10	Spectral characterization of the craters of Ryugu as observed by the NIRS3 instrument on-board Hayabusa2. Icarus, 2021, 357, 114253.	2.5	7
11	Collisional history of Ryugu's parent body from bright surface boulders. Nature Astronomy, 2021, 5, 39-45.	10.1	42
12	Thermally altered subsurface material of asteroid (162173) Ryugu. Nature Astronomy, 2021, 5, 246-250.	10.1	47
13	UV-visible-infrared spectral survey of Antarctic carbonaceous chondrite chips. Polar Science, 2021, 29, 100723.	1.2	4
14	High-resolution observations of bright boulders on asteroid Ryugu: 1. Size frequency distribution and morphology. Icarus, 2021, 369, 114529.	2.5	2
15	High-resolution observations of bright boulders on asteroid Ryugu: 2. Spectral properties. Icarus, 2021, 369, 114591.	2.5	5
16	Spectrally blue hydrated parent body of asteroid (162173) Ryugu. Nature Communications, 2021, 12, 5837.	12.8	23
17	Anaerobic Microscopic Analysis of Ferrous Saponite and Its Sensitivity to Oxidation by Earth's Air: Lessons Learned for Analysis of Returned Samples from Mars and Carbonaceous Asteroids. Minerals (Basel, Switzerland), 2021, 11, 1244.	2.0	4
18	Surface environment of Phobos and Phobos simulant UTPS. Earth, Planets and Space, 2021, 73, .	2.5	15

Τομοκί Νακάμυγα

#	Article	IF	CITATIONS
19	Science operation plan of Phobos and Deimos from the MMX spacecraft. Earth, Planets and Space, 2021, 73, .	2.5	22
20	Hayabusa2 Landing Site Selection: Surface Topography of Ryugu and Touchdown Safety. Space Science Reviews, 2020, 216, 1.	8.1	17
21	Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution. Science, 2020, 368, 654-659.	12.6	158
22	Space Weathering Simulation with Low-energy Laser Irradiation of Murchison CM Chondrite for Reproducing Micrometeoroid Bombardments on C-type Asteroids. Astrophysical Journal Letters, 2020, 890, L23.	8.3	27
23	Combining IR and Xâ€ray microtomography data sets: Application to Itokawa particles and to Paris meteorite. Meteoritics and Planetary Science, 2020, 55, 1645-1664.	1.6	8
24	Characterization of the Ryugu surface by means of the variability of the near-infrared spectral slope in NIRS3 data. Icarus, 2020, 351, 113959.	2.5	9
25	Characterizing irradiated surfaces using IR spectroscopy. Icarus, 2020, 345, 113722.	2.5	22
26	Exposure Experiments of Amorphous Silicates and Organics to Cometary Ice and Vapor Analogs. Astrophysical Journal, 2019, 881, 27.	4.5	9
27	Multivariable statistical analysis of spectrophotometry and spectra of (162173) Ryugu as observed by JAXA Hayabusa2 mission. Astronomy and Astrophysics, 2019, 629, A13.	5.1	15
28	The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science, 2019, 364, 272-275.	12.6	262
29	Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile. Science, 2019, 364, 268-272.	12.6	410
30	The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science, 2019, 364, 252.	12.6	313
31	NIRS3: The Near Infrared Spectrometer on Hayabusa2. Space Science Reviews, 2017, 208, 317-337.	8.1	60
32	An evaluation method of reflectance spectra to be obtained by Hayabusa2 Near-Infrared Spectrometer (NIRS3) based on laboratory measurements of carbonaceous chondrites. Earth, Planets and Space, 2017, 69, .	2.5	4
33	Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids. Icarus, 2015, 254, 135-143.	2.5	72
34	Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites. Geochimica Et Cosmochimica Acta, 2014, 126, 284-306.	3.9	142
35	Three-Dimensional Structure of Hayabusa Samples: Origin and Evolution of Itokawa Regolith. Science, 2011, 333, 1125-1128.	12.6	249
36	Post-hydration thermal metamorphism of carbonaceous chondrites. Journal of Mineralogical and Petrological Sciences, 2005, 100, 260-272.	0.9	177