
Wei Q Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/216687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-translational biogenesis of lipid droplet integral membrane proteins. Journal of Cell Science, 2022, 135, .	2.0	11
2	Synthesis, Biological Evaluation and Docking Studies of Ring-Opened Analogues of Ipomoeassin F. Molecules, 2022, 27, 4419.	3.8	0
3	Ipomoeassin-F inhibits the <i>in vitro</i> biogenesis of the SARS-CoV-2 spike protein and its host cell membrane receptor. Journal of Cell Science, 2021, 134, .	2.0	27
4	lpomoeassin-F disrupts multiple aspects of secretory protein biogenesis. Scientific Reports, 2021, 11, 11562.	3.3	6
5	An alternative pathway for membrane protein biogenesis at the endoplasmic reticulum. Communications Biology, 2021, 4, 828.	4.4	36
6	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. PLoS Biology, 2020, 18, e3000874.	5.6	19
7	Ring Expansion Leads to a More Potent Analogue of Ipomoeassin F. Journal of Organic Chemistry, 2020, 85, 16226-16235.	3.2	16
8	Design and Synthesis of Tetrazole- and Pyridine-Containing Itraconazole Analogs as Potent Angiogenesis Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 1111-1117.	2.8	4
9	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
10	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
11	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
12	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
13	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
14	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
15	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
16	Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. , 2020, 18, e3000874.		0
17	lpomoeassin F Binds Sec61α to Inhibit Protein Translocation. Journal of the American Chemical Society, 2019, 141, 8450-8461.	13.7	58
18	New insights into structure–activity relationship of ipomoeassin F from its bioisosteric 5-oxa/aza analogues. European Journal of Medicinal Chemistry, 2018, 144, 751-757.	5.5	9

Wei Q Shi

#	Article	IF	CITATIONS
19	Novel Tetrazole-Containing Analogues of Itraconazole as Potent Antiangiogenic Agents with Reduced Cytochrome P450 3A4 Inhibition. Journal of Medicinal Chemistry, 2018, 61, 11158-11168.	6.4	24
20	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	11.3	32
21	Structure-activity relationship study of itraconazole, a broad-range inhibitor of picornavirus replication that targets oxysterol-binding protein (OSBP). Antiviral Research, 2018, 156, 55-63.	4.1	22
22	Synergistic Contribution of Tiglate and Cinnamate to Cytotoxicity of Ipomoeassin F. Journal of Organic Chemistry, 2017, 82, 4977-4985.	3.2	19
23	Design, synthesis and biological evaluation of fucose-truncated monosaccharide analogues of ipomoeassin F. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2752-2756.	2.2	12
24	Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis. ACS Chemical Biology, 2017, 12, 174-182.	3.4	66
25	Total Synthesis of Ipomoeassin F and Its Analogs for Biomedical Research. Strategies and Tactics in Organic Synthesis, 2017, , 81-110.	0.1	3
26	Revealing the Pharmacophore of Ipomoeassin F through Molecular Editing. Organic Letters, 2016, 18, 1674-1677.	4.6	26
27	Divergence of Antiangiogenic Activity and Hepatotoxicity of Different Stereoisomers of Itraconazole. Clinical Cancer Research, 2016, 22, 2709-2720.	7.0	12
28	Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7276-85.	7.1	84
29	Total Synthesis and Biological Evaluation of Ipomoeassin F and Its Unnatural 11 <i>R</i> -Epimer. Journal of Organic Chemistry, 2015, 80, 9279-9291.	3.2	39
30	Stereospecific Metabolism of Itraconazole by CYP3A4: Dioxolane Ring Scission of Azole Antifungals. Drug Metabolism and Disposition, 2012, 40, 426-435.	3.3	24
31	Itraconazole Side Chain Analogues: Structure–Activity Relationship Studies for Inhibition of Endothelial Cell Proliferation, Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, and Hedgehog Signaling. Journal of Medicinal Chemistry, 2011, 54, 7363-7374.	6.4	45
32	Reprint of "Effect of carbohydrate amino group modifications on the cytotoxicity of glycosylated 2-phenyl-benzo[b]thiophenes and 2-phenyl-benzo[b]furans―[Bioorg. Med. Chem. Lett. 21 (2011) 2591–2596]. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5107-5112.	2.2	3
33	Cytotoxicity and topoisomerase I/II inhibition of glycosylated 2-phenyl-indoles, 2-phenyl-benzo[b]thiophenes and 2-phenyl-benzo[b]furans. Bioorganic and Medicinal Chemistry, 2011, 19, 603-612.	3.0	45
34	Structure–activity relationships in glycosylated 2-phenyl-indoles, 2-phenyl-benzo[b]thiophenes and 2-phenyl-benzo[b]furans as DNA binding and potential antitumor agents. Bioorganic and Medicinal Chemistry, 2011, 19, 1779-1789.	3.0	11
35	Reprint of "Effect of carbohydrate amino group modifications on the cytotoxicity of glycosylated 2-phenyl-benzo[b]thiophenes and 2-phenyl-benzo[b]furans―[Bioorg. Med. Chem. Lett. 21 (2011) 2591–2596]. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2591-2596.	2.2	2
36	Impact of Absolute Stereochemistry on the Antiangiogenic and Antifungal Activities of Itraconazole. ACS Medicinal Chemistry Letters, 2010, 1, 155-159	2.8	43

Wei Q Shi

#	Article	IF	CITATIONS
37	Synthesis and antibacterial activity of aminosugar-functionalized intercalating agents. Carbohydrate Research, 2010, 345, 10-22.	2.3	10
38	Determination of the absolute configurations of synthetic daunorubicin analogues using vibrational circular dichroism spectroscopy and density functional theory. Chirality, 2010, 22, 734-743.	2.6	13
39	Synthesis and DNA-binding affinity studies of glycosylated intercalators designed as functional mimics of the anthracycline antibiotics. Organic and Biomolecular Chemistry, 2009, 7, 3709.	2.8	36
40	Synthesis of Daunorubicin Analogues Containing Truncated Aromatic Cores and Unnatural Monosaccharide Residues. Journal of Organic Chemistry, 2007, 72, 2917-2928.	3.2	54
41	Chemical and chemoenzymatic synthesis of a trisaccharide fragment of Tsukamurella paurometabola lipoarabinomannan. Canadian Journal of Chemistry, 2006, 84, 642-649.	1.1	3
42	Synthesis and Quantitative Structureâ^'Activity Relationships of New 2,5-Disubstituted-1,3,4-oxadiazoles. Journal of Agricultural and Food Chemistry, 2001, 49, 124-130.	5.2	79
43	Syntheses and insecticidal activities of novel 2-fluorophenyl-5-aryl/cyclopropyl-1,3,4-oxadiazoles.	1.7	25