
Antonio Armario

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2166834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stress-related biomarkers and cognitive functioning in adolescents with ADHD: Effect of childhood maltreatment. Journal of Psychiatric Research, 2022, 149, 217-225.	3.1	8
2	Individual differences in the neuroendocrine response of male rats to emotional stressors are not trait-like and strongly depend on the intensity of the stressors. Psychoneuroendocrinology, 2021, 125, 105127.	2.7	4
3	The role of childhood trauma, HPA axis reactivity and FKBP5 genotype on cognition in healthy individuals. Psychoneuroendocrinology, 2021, 128, 105221.	2.7	2
4	Non-communicable diseases among women survivors of intimate partner violence: Critical review from a chronic stress framework. Neuroscience and Biobehavioral Reviews, 2021, 128, 720-734.	6.1	6
5	The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neuroscience and Biobehavioral Reviews, 2021, 128, 74-86.	6.1	53
6	Male long-Evans rats: An outbred model of marked hypothalamic-pituitary-adrenal hyperactivity. Neurobiology of Stress, 2021, 15, 100355.	4.0	12
7	Prenatal Alcohol Exposure and Hypothalamic-Pituitary-Adrenal Axis Activity of the Offspring in Humans: a Systematic Review. Current Addiction Reports, 2021, 8, 81-88.	3.4	1
8	Targeting Hormones for Improving Cognition in Major Mood Disorders and Schizophrenia: Thyroid Hormones and Prolactin. Clinical Drug Investigation, 2020, 40, 1-14.	2.2	27
9	Acute exposure of rats to a severe stressor alters the circadian pattern of corticosterone and sensitizes to a novel stressor: Relationship to pre-stress individual differences in resting corticosterone levels. Hormones and Behavior, 2020, 126, 104865.	2.1	4
10	Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. PLoS ONE, 2020, 15, e0233468.	2.5	29
11	Focusing attention on biological markers of acute stressor intensity: Empirical evidence and limitations. Neuroscience and Biobehavioral Reviews, 2020, 111, 95-103.	6.1	17
12	Adaptability to acute stress among women survivors of intimate partner violence: protocol for a mixed-methods cross-sectional study in a laboratory setting (BRAW study). BMJ Open, 2020, 10, e036561.	1.9	0
13	Controllability affects endocrine response of adolescent male rats to stress as well as impulsivity and behavioral flexibility during adulthood. Scientific Reports, 2019, 9, 3180.	3.3	11
14	Concomitant THC and stress adolescent exposure induces impaired fear extinction and related neurobiological changes in adulthood. Neuropharmacology, 2019, 144, 345-357.	4.1	30
15	Tratamiento con levotiroxina de los sÃntomas cognitivos persistentes en depresión mayor. Revista De PsiquiatrÃa Y Salud Mental, 2019, 12, 199-200.	1.8	Ο
16	Brain c-fos expression patterns induced by emotional stressors differing in nature and intensity. Brain Structure and Function, 2018, 223, 2213-2227.	2.3	18
17	Neuronal Activation After Prolonged Immobilization: Do the Same or Different Neurons Respond to a Novel Stressor?. Cerebral Cortex, 2018, 28, 1233-1244.	2.9	3
18	Sex differences in the relationship between prolactin levels and impaired processing speed in early psychosis. Australian and New Zealand Journal of Psychiatry, 2018, 52, 585-595.	2.3	11

#	Article	IF	CITATIONS
19	Clinical correlates of hypothalamic-pituitary-adrenal axis measures in individuals at risk for psychosis and with first-episode psychosis. Psychiatry Research, 2018, 265, 284-291.	3.3	8
20	Early life stress in rats sex-dependently affects remote endocrine rather than behavioral consequences of adult exposure to contextual fear conditioning. Hormones and Behavior, 2018, 103, 7-18.	2.1	10
21	Sex-dependent impact of early-life stress and adult immobilization in the attribution of incentive salience in rats. PLoS ONE, 2018, 13, e0190044.	2.5	18
22	Lithium-induced malaise does not interfere with adaptation of the hypothalamic-pituitary-adrenal axis to stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 75, 77-83.	4.8	2
23	IL-6 and TNF-α in unmedicated adults with ADHD: Relationship to cortisol awakening response. Psychoneuroendocrinology, 2017, 79, 67-73.	2.7	32
24	Psychostimulants and forced swim stress interaction: how activation of the hypothalamic-pituitary-adrenal axis and stress-induced hyperglycemia are affected. Psychopharmacology, 2017, 234, 2859-2869.	3.1	8
25	Text mining and expert curation to develop a database on psychiatric diseases and their genes. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	3.0	11
26	Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity. Hippocampus, 2016, 26, 1179-1188.	1.9	20
27	Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output. Scientific Reports, 2016, 6, 31244.	3.3	25
28	Chlorella vulgaris reduces the impact of stress on hypothalamic–pituitary–adrenal axis and brain c-fos expression. Psychoneuroendocrinology, 2016, 65, 1-8.	2.7	12
29	The neuroendocrine response to stress under the effect of drugs: Negative synergy between amphetamine and stressors. Psychoneuroendocrinology, 2016, 63, 94-101.	2.7	9
30	Dexamethasone Treatment Leads to Enhanced Fear Extinction and Dynamic Fkbp5 Regulation in Amygdala. Neuropsychopharmacology, 2016, 41, 832-846.	5.4	98
31	Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats. Scientific Reports, 2015, 5, 16166.	3.3	35
32	Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic–pituitary–adrenal axis and other consequences of daily repeated stress. European Neuropsychopharmacology, 2015, 25, 1248-1259.	0.7	14
33	Adaptation of the hypothalamus–pituitary–adrenal axis to daily repeated stress does not follow the rules of habituation: A new perspective. Neuroscience and Biobehavioral Reviews, 2015, 56, 35-49.	6.1	48
34	Stress-induced sensitization: the hypothalamic–pituitary–adrenal axis and beyond. Stress, 2015, 18, 269-279.	1.8	93
35	Validation of the longâ€ŧerm assessment of hypothalamicâ€pituitaryâ€∎drenal activity in rats using hair corticosterone as a biomarker. FASEB Journal, 2015, 29, 859-867.	0.5	50
36	Comparison of the effects of single and daily repeated immobilization stress on resting activity and heterotypic sensitization of the hypothalamic–pituitary–adrenal axis. Stress, 2014, 17, 176-185.	1.8	25

#	Article	IF	CITATIONS
37	Sex-dependent effects of an early life treatment in rats that increases maternal care: vulnerability or resilience?. Frontiers in Behavioral Neuroscience, 2014, 8, 56.	2.0	39
38	Sex differences in the long-lasting effects of a single exposure to immobilization stress in rats. Hormones and Behavior, 2014, 66, 793-801.	2.1	14
39	Effects of Dialectical Behaviour Therapyâ€Mindfulness Training on Emotional Reactivity in Borderline Personality Disorder: Preliminary Results. Clinical Psychology and Psychotherapy, 2014, 21, 363-370.	2.7	39
40	High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response. Neuropharmacology, 2014, 79, 75-82.	4.1	57
41	Sex differences in the behavioural and hypothalamic–pituitary–adrenal response to contextual fear conditioning in rats. Hormones and Behavior, 2014, 66, 713-723.	2.1	71
42	Behavioral and neuroendocrine consequences of juvenile stress combined with adult immobilization in male rats. Hormones and Behavior, 2014, 66, 475-486.	2.1	24
43	Prior exposure to repeated immobilization or chronic unpredictable stress protects from some negative sequels of an acute immobilization. Behavioural Brain Research, 2014, 265, 155-162.	2.2	21
44	Emotional responses to a negative emotion induction procedure in Borderline Personality Disorder. International Journal of Clinical and Health Psychology, 2013, 13, 9-17.	5.1	14
45	Stressâ€induced brain histone H3 phosphorylation: contribution of the intensity of stressors and length of exposure. Journal of Neurochemistry, 2013, 125, 599-609.	3.9	5
46	Adaptation of the pituitary-adrenal axis to daily repeated forced swim exposure in rats is dependent on the temperature of water. Stress, 2013, 16, 698-705.	1.8	15
47	Individual differences and the characterization of animal models of psychopathology: a strong challenge and a good opportunity. Frontiers in Pharmacology, 2013, 4, 137.	3.5	52
48	Not all stressors are equal: behavioral and endocrine evidence for development of contextual fear conditioning after a single session of footshocks but not of immobilization. Frontiers in Behavioral Neuroscience, 2012, 6, 69.	2.0	12
49	Physiological and behavioural consequences of long-term moderate treadmill exercise. Psychoneuroendocrinology, 2012, 37, 1745-1754.	2.7	30
50	Acute stressâ€induced sensitization of the pituitary–adrenal response to heterotypic stressors: Independence of glucocorticoid release and activation of CRH1 receptors. Hormones and Behavior, 2012, 62, 515-524.	2.1	21
51	Brain pattern of histone H3 phosphorylation after acute amphetamine administration: Its relationship to brain c-fos induction is strongly dependent on the particular brain area. Neuropharmacology, 2012, 62, 1073-1081.	4.1	15
52	Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion. Neuroscience, 2012, 204, 90-103.	2.3	65
53	What can We Know from Pituitary–Adrenal Hormones About the Nature and Consequences of Exposure to Emotional Stressors?. Cellular and Molecular Neurobiology, 2012, 32, 749-758.	3.3	54
54	Adrenocortical and behavioural response to chronic restraint stress in neurokinin-1 receptor knockout mice. Physiology and Behavior, 2012, 105, 669-675.	2.1	14

#	Article	IF	CITATIONS
55	7,8â€dihydroxyflavone, a TrkB receptor agonist, blocks longâ€ŧerm spatial memory impairment caused by immobilization stress in rats. Hippocampus, 2012, 22, 399-408.	1.9	102
56	Adolescent pre-exposure to ethanol or MDMA prolongs the conditioned rewarding effects of MDMA. Physiology and Behavior, 2011, 103, 585-593.	2.1	26
57	Repeated exposure to immobilization or two different footshock intensities reveals differential adaptation of the hypothalamic–pituitary–adrenal axis. Physiology and Behavior, 2011, 103, 125-133.	2.1	64
58	Adaptation of the hypothalamic-pituitary-adrenal axis and glucose to repeated immobilization or restraint stress is not influenced by associative signals. Behavioural Brain Research, 2011, 217, 232-239.	2.2	19
59	Behavioral and Endocrine Consequences of Simultaneous Exposure to Two Different Stressors in Rats: Interaction or Independence?. PLoS ONE, 2011, 6, e21426.	2.5	27
60	Increased Cardiovascular and Anxiety Outcomes but Not Endocrine Biomarkers of Stress During Performance of Endoscopic Sinus Surgery. JAMA Otolaryngology, 2011, 137, 487.	1.2	22
61	Sexâ€dependent effects of maternal deprivation and adolescent cannabinoid treatment on adult rat behaviour. Addiction Biology, 2011, 16, 624-637.	2.6	71
62	Effect of 7,8-Dihydroxyflavone, a Small-Molecule TrkB Agonist, on Emotional Learning. American Journal of Psychiatry, 2011, 168, 163-172.	7.2	196
63	Susceptibility to stress in transgenic mice overexpressing TrkC, a model of panic disorder. Journal of Psychiatric Research, 2010, 44, 157-167.	3.1	18
64	Immediateâ€early gene response to repeated immobilization: Fos protein and <i>arc</i> mRNA levels appear to be less sensitive than <i>câ€fos</i> mRNA to adaptation. European Journal of Neuroscience, 2010, 31, 2043-2052.	2.6	47
65	Mecanismos de susceptibilidad al estrés. Hipertension Y Riesgo Vascular, 2010, 27, 117-124.	0.6	1
66	Do odors from different cats induce equivalent unconditioned and conditioned responses in rats?. Physiology and Behavior, 2010, 99, 388-394.	2.1	22
67	The brain pattern of c-fos induction by two doses of amphetamine suggests different brain processing pathways and minor contribution of behavioural traits. Neuroscience, 2010, 168, 691-705.	2.3	35
68	A single footshock causes long-lasting hypoactivity in unknown environments that is dependent on the development of contextual fear conditioning. Neurobiology of Learning and Memory, 2010, 94, 183-190.	1.9	29
69	Activation of the hypothalamic–pituitary–adrenal axis by addictive drugs: different pathways, common outcome. Trends in Pharmacological Sciences, 2010, 31, 318-325.	8.7	104
70	Enduring effects of environmental enrichment from weaning to adulthood on pituitary-adrenal function, pre-pulse inhibition and learning in male and female rats. Psychoneuroendocrinology, 2009, 34, 1390-1404.	2.7	91
71	Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis. Psychopharmacology, 2009, 206, 355-365.	3.1	46
72	Repeated amphetamine administration in rats revealed consistency across days and a complete dissociation between locomotor and hypothalamic-pituitary-adrenal axis effects of the drug. Psychopharmacology, 2009, 207, 447-459.	3.1	4

#	Article	IF	CITATIONS
73	Cat odor causes long-lasting contextual fear conditioning and increased pituitary-adrenal activation, without modifying anxiety. Hormones and Behavior, 2009, 56, 465-471.	2.1	28
74	Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals. Neuroscience and Biobehavioral Reviews, 2008, 32, 1121-1135.	6.1	130
75	Exposure to Severe Stressors Causes Longâ€lasting Dysregulation of Resting and Stressâ€induced Activation of the Hypothalamicâ€Pituitaryâ€Adrenal Axis. Annals of the New York Academy of Sciences, 2008, 1148, 165-173.	3.8	38
76	Characterization of central and peripheral components of the hypothalamus–pituitary–adrenal axis in the inbred Roman rat strains. Psychoneuroendocrinology, 2008, 33, 437-445.	2.7	60
77	Marked dissociation between hypothalamic–pituitary–adrenal activation and long-term behavioral effects in rats exposed to immobilization or cat odor. Psychoneuroendocrinology, 2008, 33, 1139-1150.	2.7	47
78	A single exposure to immobilization causes long-lasting pituitary-adrenal and behavioral sensitization to mild stressors. Hormones and Behavior, 2008, 54, 654-661.	2.1	75
79	Previous exposure to immobilisation and repeated exposure to a novel environment demonstrate a marked dissociation between behavioral and pituitary–adrenal responses. Behavioural Brain Research, 2008, 187, 239-245.	2.2	49
80	Litter size affects emotionality in adult male rats. Physiology and Behavior, 2007, 92, 708-716.	2.1	58
81	Differential effects of stress and amphetamine administration on Fos-like protein expression in corticotropin releasing factor-neurons of the rat brain. Developmental Neurobiology, 2007, 67, 702-714.	3.0	30
82	Dynamics of immediate early gene and neuropeptide gene response to prolonged immobilization stress: evidence against a critical role of the termination of exposure to the stressor. Journal of Neurochemistry, 2007, 100, 905-914.	3.9	18
83	Influence of reactivity to novelty and anxiety on hypothalamic–pituitary–adrenal and prolactin responses to two different novel environments in adult male rats. Behavioural Brain Research, 2006, 168, 13-22.	2.2	61
84	The Hypothalamic-Pituitary-Adrenal Axis: What can it Tell us About Stressors?. CNS and Neurological Disorders - Drug Targets, 2006, 5, 485-501.	1.4	188
85	Social stress is as effective as physical stress in reinstating morphine-induced place preference in mice. Psychopharmacology, 2006, 185, 459-470.	3.1	108
86	Differences in the brain expression of c-fos mRNA after restraint stress in Lewis compared to Sprague–Dawley rats. Brain Research, 2006, 1077, 7-15.	2.2	27
87	Longâ€ŧerm effects of a single exposure to immobilization: A Câ€fos mRNA study of the response to the homotypic stressor in the rat brain. Journal of Neurobiology, 2006, 66, 591-602.	3.6	27
88	The Contribution of Immediate Early Genes to the Understanding of Brain Processing of Stressors. , 2006, , 199-221.		6
89	Mapping the areas sensitive to long-term endotoxin tolerance in the rat brain: a c-fos mRNA study. Journal of Neurochemistry, 2005, 93, 1177-1188.	3.9	19
90	The effects of chronic food restriction on hypothalamic–pituitary–adrenal activity depend on morning versus evening availability of food. Pharmacology Biochemistry and Behavior, 2005, 81, 41-46.	2.9	27

#	Article	IF	CITATIONS
91	Responsiveness of the hypothalamic–pituitary–adrenal axis to different novel environments is a consistent individual trait in adult male outbred rats. Psychoneuroendocrinology, 2005, 30, 179-187.	2.7	43
92	Perseverance of exploration in novel environments predicts morphine place conditioning in rats. Behavioural Brain Research, 2005, 165, 72-79.	2.2	25
93	A single dose of metyrapone caused long-term dysregulation of the hypothalamic–pituitary–adrenal axis in the rat. Neuroscience, 2005, 130, 427-434.	2.3	18
94	Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated) Tj ETQq0 0 Neurochemistry, 2004, 89, 1111-1118.	0 rgBT /C 3.9	Overlock 10 T 95
95	Long-Term Effects of a Single Exposure to Immobilization on the Hypothalamic-Pituitary-Adrenal Axis: Neurobiologic Mechanisms. Annals of the New York Academy of Sciences, 2004, 1018, 162-172.	3.8	30
96	Potentiation of glucocorticoid release does not modify the long-term effects of a single exposure to immobilization stress. Psychopharmacology, 2004, 177, 230-237.	3.1	18
97	A Single Exposure to Severe Stressors Causes Long-term Desensitisation of the Physiological Response to the Homotypic Stressor. Stress, 2004, 7, 157-172.	1.8	101
98	Long-term effects of a single exposure to stress in adult rats on behavior and hypothalamic–pituitary–adrenal responsiveness: comparison of two outbred rat strains. Behavioural Brain Research, 2004, 154, 399-408.	2.2	59
99	The hypothalamic–pituitary–adrenal and glucose responses to daily repeated immobilisation stress in rats: individual differences. Neuroscience, 2004, 123, 601-612.	2.3	56
100	Behavioral, neuroendocrine and neurochemical effects of the imidazoline I2 receptor selective ligand BU224 in naive rats and rats exposed to the stress of the forced swim test. Psychopharmacology, 2003, 167, 195-202.	3.1	45
101	Glucocorticoids are involved in the long-term effects of a single immobilization stress on the hypothalamic–pituitary–adrenal axis. Psychoneuroendocrinology, 2003, 28, 992-1009.	2.7	55
102	Long-term effects of a single exposure to immobilization stress on the hypothalamic-pituitary-adrenal axis: transcriptional evidence for a progressive desensitization process. European Journal of Neuroscience, 2003, 18, 1353-1361.	2.6	30
103	Renal Mechanisms Involved in Stress-induced Antinatriuresis and Antidiuresis in Rats. Archives of Physiology and Biochemistry, 2003, 111, 259-264.	2.1	12
104	Post-stress recovery of pituitary–adrenal hormones and glucose, but not the response during exposure to the stressor, is a marker of stress intensity in highly stressful situations. Brain Research, 2002, 926, 181-185.	2.2	90
105	A single lipopolysaccharide administration is sufficient to induce a long-term desensitization of the hypothalamic–pituitary–adrenal axis. Neuroscience, 2002, 112, 383-389.	2.3	31
106	Is repeated exposure to immobilization needed to induce adaptation of the hypothalamic–pituitary–adrenal axis? Influence of adrenal factors. Behavioural Brain Research, 2002, 129, 187-195.	2.2	32
107	Positive relationship between activity in a novel environment and operant ethanol self-administration in rats. Psychopharmacology, 2002, 162, 333-338.	3.1	96
108	Evidence that metyrapone can act as a stressor: effect on pituitary-adrenal hormones, plasma glucose and brain c-fos induction. European Journal of Neuroscience, 2002, 16, 693-700.	2.6	55

#	Article	IF	CITATIONS
109	Evidence that a single exposure to aversive stimuli triggers longâ€lasting effects in the hypothalamusâ€pituitaryâ€adrenal axis that consolidate with time. European Journal of Neuroscience, 2001, 13, 129-136.	2.6	4
110	Individual differences in the recovery of the hypothalamic–pituitary–adrenal axis after termination of exposure to a severe stressor in outbred male Sprague–Dawley rats. Psychoneuroendocrinology, 2001, 26, 363-374.	2.7	19
111	Evidence that a single exposure to aversive stimuli triggers long-lasting effects in the hypothalamus-pituitary-adrenal axis that consolidate with time. European Journal of Neuroscience, 2001, 13, 129-136.	2.6	71
112	Rapid modifications of somatostatin neuron activity in the periventricular nucleus after acute stress. Experimental Brain Research, 2000, 134, 261-267.	1.5	26
113	Single exposure to stressors causes long-lasting, stress-dependent reduction of food intake in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R1138-R1144.	1.8	123
114	Recovery of the Hypothalamic-Pituitary-Adrenal Response to Stress. Neuroendocrinology, 2000, 72, 114-125.	2.5	190
115	Influence of single or repeated experience of rats with forced swimming on behavioural and physiological responses to the stressor. Behavioural Brain Research, 2000, 114, 175-181.	2.2	93
116	Direct evidence of acute stress-induced facilitation of ACTH response to subsequent stress in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R863-R868.	1.8	12
117	Defective ACTH response to stress in previously stressed rats: dependence on glucocorticoid status. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R869-R877.	1.8	6
118	Abnormalities of hypothalamic-pituitary-adrenal and hypothalamic-somatotrophic axes in Fawn-Hooded rats. European Journal of Endocrinology, 1999, 141, 290-296.	3.7	10
119	Activation of the hypothalamic-pituitary axis in adrenalectomised rats: potentiation by chronic stress. Brain Research, 1999, 821, 1-7.	2.2	34
120	IL-6 deficiency leads to increased emotionality in mice: evidence in transgenic mice carrying a null mutation for IL-6. Journal of Neuroimmunology, 1998, 92, 160-169.	2.3	65
121	The effect of chronic administration of antidepressants on the circadian pattern of corticosterone in the rat. Psychopharmacology, 1998, 140, 127-134.	3.1	12
122	Chronic immobilization stress appears to increase the role of dopamine in the control of active behaviour in the forced swimming test. Behavioural Brain Research, 1998, 91, 91-97.	2.2	14
123	Anterior pituitary response to stress : timeâ€related changes and adaptation. International Journal of Developmental Neuroscience, 1998, 16, 241-260.	1.6	133
124	Glucocorticoid negative feedback on the HPA axis in five inbred rat strains. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R420-R427.	1.8	50
125	Influence of Regularity of Exposure to Chronic Stress on the Pattern of Habituation of Pituitary-Adrenal Hormones, Prolactin and Clucose. Stress, 1997, 1, 179-189.	1.8	80
126	Are Wistar-Kyoto rats a genetic animal model of depression resistant to antidepressants?. European Journal of Pharmacology, 1997, 337, 115-123.	3.5	128

#	Article	IF	CITATIONS
127	Chronic Immobilization Stress Reduces Sodium Intake and Renal Excretion in Rats. Physiology and Behavior, 1997, 62, 1391-1396.	2.1	12
128	Brain corticotropin-releasing factor immunoreactivity and receptors in five inbred rat strains: relationship to forced swimming behaviour. Brain Research, 1997, 750, 285-292.	2.2	64
129	Inhibition of corticosteroid-binding globulin caused by a severe stressor is apparently mediated by the adrenal but not by glucocorticoid receptors. Endocrine, 1997, 6, 159-164.	2.2	42
130	Forced swimming behavior is not related to the corticosterone levels ain the test: A study with four inbred rat strains. Physiology and Behavior, 1996, 59, 369-373.	2.1	61
131	Acute stress markers in humans: Response of plasma glucose, cortisol and prolactin to two examinations differing in the anxiety they provoke. Psychoneuroendocrinology, 1996, 21, 17-24.	2.7	101
132	The effects of two chronic intermittent stressors on brain monoamines. Pharmacology Biochemistry and Behavior, 1996, 53, 517-523.	2.9	32
133	Differential responsiveness of inbred strains of rats to antidepressants in the forced swimming test: are Wistar Kyoto rats an animal model of subsensitivity to antidepressants?. Psychopharmacology, 1996, 123, 191-198.	3.1	90
134	Fawn-hooded rats show enhanced active behaviour in the forced swimming test, with no evidence for pituitary-adrenal axis hyperactivity. Psychopharmacology, 1996, 125, 74-78.	3.1	35
135	Hypothalamic-Pituitary-Adrenal Response to Chronic Stress in Five Inbred Rat Strains: Differential Responses Are Mainly Located at the Adrenocortical Level. Neuroendocrinology, 1996, 63, 327-337.	2.5	240
136	Acute stress attenuates but does not abolish circadian rhythmicity of serum thyrotrophin and growth hormone in the rat. European Journal of Endocrinology, 1996, 135, 703-708.	3.7	40
137	Inhibition of catecholamine synthesis with α-methyl-p-tyrosine apparently increases brain serotoninergic activity in the rat: No influence of previous chronic immobilization stress. Pharmacology Biochemistry and Behavior, 1995, 52, 107-112.	2.9	10
138	Comparison of the behavioural and endocrine response to forced swimming stress in five inbred strains of rats. Psychoneuroendocrinology, 1995, 20, 879-890.	2.7	191
139	The effect of acute and chronic acth administration on pituitary-adrenal response to acute immobilization stress. Relationship to changes in corticosteroid-binding globulin. Endocrine Research, 1994, 20, 139-149.	1.2	26
140	Effects of chronic stress on food intake in rats: Influence of stressor intensity and duration of daily exposure. Physiology and Behavior, 1994, 55, 747-753.	2.1	264
141	Direct Evidence for Chronic Stress-Induced Facilitation of the Adrenocorticotropin Response to a Novel Acute Stressor. Neuroendocrinology, 1994, 60, 1-7.	2.5	114
142	Brain Metallothionein in Stress. NeuroSignals, 1994, 3, 198-210.	0.9	23
143	Chronic but not Acute Exposure to Stress is Associated with Hypothalamic Vasoactive Intestinal Polypeptide (VIP) Release into Median Eminence. Journal of Neuroendocrinology, 1993, 5, 421-425.	2.6	10
144	Effect of regularity of exposure to chronic immobilization stress on the circadian pattern of pituitary adrenal hormones, growth hormone, and thyroid stimulating hormone in the adult male rat. Psychoneuroendocrinology, 1993, 18, 67-77.	2.7	89

#	Article	IF	CITATIONS
145	Chronic stress reduces serum but not liver metallothionein response to acute stress. Chemico-Biological Interactions, 1993, 88, 1-5.	4.0	3
146	Effects of diazepam and desipramine in the forced swimming test: influence of previous experience with the situation. European Journal of Pharmacology, 1993, 236, 295-299.	3.5	58
147	Chronic stress induced changes in LH secretion: The contribution of anorexia associated to stress. Life Sciences, 1993, 52, 1187-1194.	4.3	9
148	Role of somatostatin in the acute immobilization stress-induced CH decrease in rat. Life Sciences, 1993, 52, 361-370.	4.3	35
149	Evidence for the involvement of serotonin in acute stress-induced release of luteinizing hormone in the male rat. Brain Research Bulletin, 1993, 31, 29-31.	3.0	18
150	Effects of chronic immobilization stress on GH and TSH secretion in the rat: Response to hypothalamic regulatory factors. Psychoneuroendocrinology, 1993, 18, 405-413.	2.7	28
151	Negative feedback of corticosterone on the pituitary-adrenal axis is maintained after inhibition of serotonin synthesis with parachlorophenylalanine. Brain Research Bulletin, 1992, 28, 915-918.	3.0	6
152	Behavioral and neurochemical changes in response to acute stressors: Influence of previous chronic exposure to immobilization. Pharmacology Biochemistry and Behavior, 1992, 42, 407-412.	2.9	38
153	Inhibition of catecholamine synthesis depresses behavior of rats in the holeboard and forced swim tests: Influence of previous chronic stress. Pharmacology Biochemistry and Behavior, 1992, 43, 597-601.	2.9	22
154	Influence of various acute stressors on the activity of adult male rats in a holeboard and in the forced swim test. Pharmacology Biochemistry and Behavior, 1991, 39, 373-377.	2.9	100
155	Metallothionein-I induction by stress in specific brain areas. Neurochemical Research, 1991, 16, 1145-1148.	3.3	34
156	Role of Glucocorticoids and Catecholamines on Hepatic Thiobarbituric Acid Reactants in Basal and Stress Conditions in the Rat. Hormone and Metabolic Research, 1991, 23, 104-109.	1.5	14
157	Liver, Brain, and Heart Metallothionein Induction by Stress. Journal of Neurochemistry, 1990, 55, 651-654.	3.9	75
158	Chronic stress reduced GH response to the serotonin agonist 5-methoxy-n, n-dimethyltriptamine but did not alter pituitary–adrenal, prolactin or TSH responses in the rat. Stress and Health, 1990, 6, 133-139.	0.5	3
159	Vitamin E-Supplemented Diets Reduce Lipid Peroxidation but Do Not Alter Either Pituitary-Adrenal, Glucose, and Lactate Responses to Immobilization Stress or Gastric Ulceration. Free Radical Research Communications, 1990, 9, 113-118.	1.8	19
160	Blockade of opioid receptors with naltrexone inhibits thyrotropin increase after noise stress but does not prevent the decrease caused by immobilization. Brain Research Bulletin, 1990, 25, 347-349.	3.0	3
161	The serum glucose response to acute stress is sensitive to the intensity of the stressor and to habituation. Psychoneuroendocrinology, 1990, 15, 341-347.	2.7	82
162	Comparison of crowding and food restriction effects on growth, body weight gain and endocrine status in the rat. Reproduction, Nutrition, Development, 1989, 29, 339-345.	1.9	10

#	Article	IF	CITATIONS
163	Chronic administration of clomipramine prevents the increase in serotonin and noradrenaline induced by chronic stress. Psychopharmacology, 1989, 99, 22-26.	3.1	26
164	Influence of intensity and duration of exposure to various stressors on serum TSH and GH levels in adult male rats. Life Sciences, 1989, 44, 215-221.	4.3	43
165	Individual housing does not influence the adaptation of the pituitary-adrenal axis and other physiological variables to chronic stress in adult male rats. Physiology and Behavior, 1989, 45, 477-481.	2.1	52
166	Previous chronic chlorimipramine treatment did not modify some physiological responses to acute and chronic stress in rats. Psychopharmacology, 1988, 94, 217-20.	3.1	11
167	Chronic Stress Increases Serotonin and Noradrenaline in Rat Brain and Sensitizes Their Responses to a Further Acute Stress. Journal of Neurochemistry, 1988, 50, 1678-1681.	3.9	206
168	Forced swimming test in rats: effect of desipramine administration and the period of exposure to the test on struggling behavior, swimming, immobility and defecation rate. European Journal of Pharmacology, 1988, 158, 207-212.	3.5	133
169	Effect of a chronic stress model of depression on basal and acute stress levels of LH and prolactin in adult male rats. Biological Psychiatry, 1988, 24, 447-450.	1.3	8
170	Are Catecholamines Positive Regulators of Metallothionein Synthesis During Stress in the Rat?. Hormone and Metabolic Research, 1988, 20, 530-532.	1.5	4
171	Evidence that the Pituitary-Adrenal Axis Does Not Cross-Adapt to Stressors: Comparison to Other Physiological Variables. Neuroendocrinology, 1988, 47, 263-267.	2.5	122
172	Differences between Pregnant and Nulliparous Rats in Basal and Stress Levels of Metallothionein. Neonatology, 1988, 53, 148-155.	2.0	5
173	Differences in prolactin and LH responses to acute stress between peripuberal and adult male rats. Journal of Endocrinology, 1987, 112, 9-13.	2.6	19
174	Chronic Food Restriction and the Circadian Rhythms of Pituitary-Adrenal Hormones, Growth Hormone and Thyroid-Stimulating Hormone. Annals of Nutrition and Metabolism, 1987, 31, 81-87.	1.9	83
175	Crowding-induced changes in basal and stress levels of thyrotropin and somatotropin in male rats. Behavioral and Neural Biology, 1987, 48, 334-343.	2.2	3
176	Long-lasting effects of chronic chlorimipramine treatment of rats on exploratory activity on a hole-board, and on immobility in the force swimming test. European Journal of Pharmacology, 1987, 142, 385-389.	3.5	7
177	Tricyclic antidepressants activate the pituitary-adrenal axis in the rat. Tolerance to repeated drug administration. European Journal of Pharmacology, 1987, 140, 239-244.	3.5	18
178	The effects of chronic stress on corticosterone, GH and TSH response to morphine administration. Brain Research, 1987, 401, 200-203.	2.2	20
179	Pituitaryâ€Gonadal Function in Adult Male Rats Subjected to Chronic Water Restriction. Journal of Andrology, 1987, 8, 1-6.	2.0	8
180	Age-dependent effects of acute and chronic intermittent stresses on serum metallothionein. Physiology and Behavior, 1987, 39, 277-279.	2.1	18

#	Article	IF	CITATIONS
181	Chronic stress depresses exploratory activity and behavioral performance in the forced swimming test without altering ACTH response to a novel acute stressor. Physiology and Behavior, 1987, 40, 33-38.	2.1	103
182	Previous chronic ACTH administration does not protect against the effects of acute or chronic stress in male rats. Physiology and Behavior, 1987, 40, 165-170.	2.1	20
183	Chronic stress alters pituitary-adrenal function in prepubertal male rats. Psychoneuroendocrinology, 1987, 12, 393-398.	2.7	30
184	The effects of chronic intermittent stress on basal and acute stress levels of TSH and GH, and their response to hypothalamic regulatory factors in the rat. Psychoneuroendocrinology, 1987, 12, 399-406.	2.7	20
185	Interaction between chronic stress and clomipramine treatment in rats. Effects on exploratory activity, behavioral despair, and pituitary-adrenal function. Psychopharmacology, 1987, 93, 77-81.	3.1	43
186	Effect of Cd administration on the pituitary-adrenal axis. Toxicology, 1987, 45, 113-116.	4.2	15
187	The influence of restraint stress in rats on metallothionein production and corticosterone and glucagon secretion. Life Sciences, 1986, 39, 611-616.	4.3	20
188	Adrenocorticotropin administration increases testosterone secretion in adult male rats. Life Sciences, 1986, 39, 1119-1122.	4.3	3
189	Sensitivity of anterior pituitary hormones to graded levels of psychological stress. Life Sciences, 1986, 39, 471-475.	4.3	74
190	Effects of water restriction on circadian rhythms of corticosterone, growth hormone and thyroid stimulating hormone in adult male rats. Physiology and Behavior, 1986, 38, 327-330.	2.1	13
191	Restraint stress induced changes in rat liver and serum metallothionein and in Zn metabolism. Experientia, 1986, 42, 1006-1010.	1.2	27
192	Searching for Biological Markers of Personality: Are There Neuroendocrine Markers of Anxiety?. , 0, , .		1

Searching for Biological Markers of Personality: Are There Neuroendocrine Markers of Anxiety?., 0, , . 192