
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2165170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diet-gut microbiota interactions on cardiovascular disease. Computational and Structural Biotechnology Journal, 2022, 20, 1528-1540.	4.1	34
2	Alteration of microbiota antibodyâ€mediated immune selection contributes to dysbiosis in inflammatory bowel diseases. EMBO Molecular Medicine, 2022, 14, .	6.9	8
3	Fecal Microbiota Transplant from Human to Mice Gives Insights into the Role of the Gut Microbiota in Non-Alcoholic Fatty Liver Disease (NAFLD). Microorganisms, 2021, 9, 199.	3.6	33
4	Rapeseed and Soy Lecithin As Food Additives Vectors of $\hat{I}\pm$ -Linolenic Acid: Impacts on High-Fat Induced Adiposity, Inflammation and Gut Microbiota in Mice. Current Developments in Nutrition, 2021, 5, 364.	0.3	3
5	Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Frontiers in Nutrition, 2021, 8, 637010.	3.7	109
6	Tolerogenic Dendritic Cells Shape a Transmissible Gut Microbiota That Protects From Metabolic Diseases. Diabetes, 2021, 70, 2067-2080.	0.6	7
7	The Epistemic Revolution Induced by Microbiome Studies: An Interdisciplinary View. Biology, 2021, 10, 651.	2.8	18
8	Cholesterol-to-Coprostanol Conversion by the Gut Microbiota: What We Know, Suspect, and Ignore. Microorganisms, 2021, 9, 1881.	3.6	39
9	Beneficial effect of whole-grain wheat on liver fat: a role for the gut microbiota?. Hepatobiliary Surgery and Nutrition, 2021, 10, 708-710.	1.5	2
10	The role of microbiota in tissue repair and regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 539-555.	2.7	23
11	Exploring the Bacterial Impact on Cholesterol Cycle: A Numerical Study. Frontiers in Microbiology, 2020, 11, 1121.	3.5	17
12	Fatâ€Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeostasis in Mice Fed a Lowâ€Protein Diet. Molecular Nutrition and Food Research, 2020, 64, e1900835.	3.3	11
13	Murine Genetic Background Overcomes Gut Microbiota Changes to Explain Metabolic Response to High-Fat Diet. Nutrients, 2020, 12, 287.	4.1	25
14	Endotoxin Producers Overgrowing in Human Gut Microbiota as the Causative Agents for Nonalcoholic Fatty Liver Disease. MBio, 2020, 11, .	4.1	96
15	The crosstalk between the gut microbiota and lipids. OCL - Oilseeds and Fats, Crops and Lipids, 2020, 27, 70.	1.4	10
16	Gastrointestinal Tract: Microbial Metabolism of Steroids. , 2020, , 389-399.		0
17	Übergewicht durch Darmflora. , 2020, , 247-259.		0
18	Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutrition Research, 2019, 71, 72-88.	2.9	17

#	Article	IF	CITATIONS
19	The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences, 2019, 76, 1541-1558.	5.4	333
20	Gastrointestinal Tract: Microbial Metabolism of Steroids. , 2019, , 1-11.		2
21	Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism. FASEB Journal, 2019, 33, 7126-7142.	0.5	36
22	The intestinal microbiota regulates host cholesterol homeostasis. BMC Biology, 2019, 17, 94.	3.8	125
23	Fecal microbiome as determinant of the effect of diet on colorectal cancer risk: comparison of meat-based versus pesco-vegetarian diets (the MeaTlc study). Trials, 2019, 20, 688.	1.6	14
24	Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. Journal of Lipid Research, 2019, 60, 323-332.	4.2	149
25	Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E334-E352.	3.5	119
26	Microbiota, Liver Diseases, and Alcohol. , 2018, , 187-212.		2
27	Addition of dairy lipids and probiotic Lactobacillus fermentum in infant formula programs gut microbiota and entero-insular axis in adult minipigs. Scientific Reports, 2018, 8, 11656.	3.3	33
28	The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome, 2018, 6, 134.	11.1	169
29	Microbiota composition affects lipid metabolism and intestinal homeostasis. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, e11.	2.6	1
30	Effect of different microbiota on lipid metabolism, liver steatosis and intestinal homeostasis in mice fed a low-protein diet. Atherosclerosis, 2017, 263, e6-e7.	0.8	1
31	Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria. Analytical and Bioanalytical Chemistry, 2017, 409, 1231-1245.	3.7	81
32	The Effects of Weaning Methods on Gut Microbiota Composition and Horse Physiology. Frontiers in Physiology, 2017, 8, 535.	2.8	80
33	Gut Microbiome and Obesity. How to Prove Causality?. Annals of the American Thoracic Society, 2017, 14, S354-S356.	3.2	19
34	Microbiota, Liver Diseases, and Alcohol. Microbiology Spectrum, 2017, 5, .	3.0	18
35	Recent Patents on Hypocholesterolemic Therapeutic Strategies: An Update. Recent Advances in DNA & Gene Sequences, 2016, 9, 36-44.	0.7	2
36	High fat diet drives obesity regardless the composition of gut microbiota in mice. Scientific Reports, 2016, 6, 32484.	3.3	97

#	Article	IF	CITATIONS
37	Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut, 2016, 65, 830-839.	12.1	429
38	Gut microbiota and obesity. Cellular and Molecular Life Sciences, 2016, 73, 147-162.	5.4	383
39	Metabolism of Cholesterol and Bile Acids by the Gut Microbiota. Pathogens, 2014, 3, 14-24.	2.8	454
40	Intestinal microbiota in metabolic diseases. Gut Microbes, 2014, 5, 544-551.	9.8	170
41	O146 INTESTINAL DYSBIOSIS EXPLAINS INTER-INDIVIDUAL DIFFERENCES IN SUSCEPTIBILITY TO ALCOHOLIC LIVER DISEASE. Journal of Hepatology, 2014, 60, S61.	3.7	3
42	Metabolic Interplay between Gut Bacteria and Their Host. Frontiers of Hormone Research, 2014, 42, 73-82.	1.0	18
43	Les relations entre microbiote intestinal et lipides. Cahiers De Nutrition Et De Dietetique, 2014, 49, 213-217.	0.3	0
44	Effect of prebiotic carbohydrates on growth, bile survival and cholesterol uptake abilities of dairyâ€related bacteria. Journal of the Science of Food and Agriculture, 2014, 94, 1184-1190.	3.5	29
45	Harnessing the beneficial properties of adipogenic microbes for improving human health. Obesity Reviews, 2013, 14, 721-735.	6.5	13
46	Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut, 2013, 62, 1787-1794.	12.1	777
47	Short-Chain Fructo-Oligosaccharides Modulate Intestinal Microbiota and Metabolic Parameters of Humanized Gnotobiotic Diet Induced Obesity Mice. PLoS ONE, 2013, 8, e71026.	2.5	75
48	Helicobacter pylori serologic status has no influence on the association between fucosyltransferase 2 polymorphism (FUT2 461 G→A) and vitamin B-12 in Europe and West Africa. American Journal of Clinical Nutrition, 2012, 95, 514-521.	4.7	20
49	Microbiote intestinal et lipides : impact sur la santé humaine. Oleagineux Corps Gras Lipides, 2012, 19, 223-227.	0.2	Ο
50	1356 TRANSMISSION OF HUMAN LIVER SENSITIVITY TO ALCOHOL BY INTESTINAL MICROBIOTA. Journal of Hepatology, 2012, 56, S533.	3.7	0
51	Calcium alginateâ€resistant starch mixed gel improved the survival of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> Bb12 and <i>Lactobacillus rhamnosus</i> LBREâ€LSAS in yogurt and simulated gastrointestinal conditions. International Journal of Food Science and Technology, 2012, 47, 1421-1429.	2.7	31
52	Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucinâ€degradation in humanized rats. Environmental Microbiology, 2011, 13, 2667-2680.	3.8	215
53	Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB Journal, 2010, 24, 4948-4959.	0.5	425
54	Germâ€free C57BL/6J mice are resistant to highâ€fatâ€dietâ€induced insulin resistance and have altered cholesterol metabolism. FASEB Journal, 2010, 24, 4948-4959.	0.5	321

#	Article	IF	CITATIONS
55	Microbial Community Development in a Dynamic Gut Model Is Reproducible, Colon Region Specific, and Selective for <i>Bacteroidetes</i> and <i>Clostridium</i> Cluster IX. Applied and Environmental Microbiology, 2010, 76, 5237-5246.	3.1	272
56	GI Bacteria Changes in Animal Models Due to Prebiotics. , 2010, , 553-570.		1
57	1149 GUT MICROBIOTA MIGHT BE A KEY FACTOR ON THE SEVERITY OF ACUTE ALCOHOLIC HEPATITIS. Journal of Hepatology, 2010, 52, S444.	3.7	0
58	Characterization of Cecal Microbiota and Response to an Orally Administered <i>Lactobacillus</i> Probiotic Strain in the Broiler Chicken. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 115-122.	1.0	33
59	<i>Bacteroides</i> sp. Strain D8, the First Cholesterol-Reducing Bacterium Isolated from Human Feces. Applied and Environmental Microbiology, 2007, 73, 5742-5749.	3.1	104
60	Correlation between faecal microbial community structure and cholesterol-to-coprostanol conversion in the human gut. FEMS Microbiology Letters, 2005, 242, 81-86.	1.8	60
61	Isolates from normal human intestinal flora but not lactic acid bacteria exhibit 7α- and 7β-hydroxysteroid dehydrogenase activities. Microbial Ecology in Health and Disease, 2004, 16, 195-201.	3.5	17
62	Epimerization of chenodeoxycholic acid to ursodeoxycholic acid byClostridium baratiiisolated from human feces. FEMS Microbiology Letters, 2004, 235, 65-72.	1.8	62
63	Cnotobiotic rats harboring human intestinal microbiota as a model for studying cholesterol-to-coprostanol conversion. FEMS Microbiology Ecology, 2004, 47, 337-343.	2.7	60
64	Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratii isolated from human feces. FEMS Microbiology Letters, 2004, 235, 65-72.	1.8	40
65	Expression and purification of FtsW and RodA from Streptococcus pneumoniae, two membrane proteins involved in cell division and cell growth, respectively. Protein Expression and Purification, 2003, 30, 18-25.	1.3	9
66	Membrane Topology of the Streptococcus pneumoniae FtsW Division Protein. Journal of Bacteriology, 2002, 184, 1925-1931.	2.2	39
67	Both pH and Carbon Flux Influence the Level of Rubredoxin in Clostridium butyricum. Current Microbiology, 2001, 43, 434-439.	2.2	0
68	Cloning and Characterization of the Gene Encoding Clostridium butyricum rubredoxin. Anaerobe, 2000, 6, 29-37.	2.1	3
69	Distribution of the Rubredoxin Gene Among the Clostridium butyricum Species. Current Microbiology, 1999, 38, 264-267.	2.2	3
70	Human Haptocorrin in Hepatocellular Carcinoma. Cancer Detection and Prevention, 1999, 23, 89-96.	2.1	18
71	Assimilation of [57Co]-Labeled Cobalamin in Human Fetal Gastrointestinal Xenografts into Nude Mice. Pediatric Research, 1999, 45, 860-866.	2.3	11
72	Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431. Journal of Applied Microbiology, 1998, 84, 515-522.	3.1	50

#	Article	IF	CITATIONS
73	Properties of Allyl Alcohol-Resistant Mutants of Clostridium butyricum Grown on Glycerol. Applied and Environmental Microbiology, 1996, 62, 3499-3501.	3.1	6
74	Rapeseed and soy lecithin as vectors of α-linolenic acid: Impacts on adiposity, inflammation and gut microbiota in high-fat fed mice. , 0, , .		0