
Janet Dubinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2164871/publications.pdf Version: 2024-02-01

INNET DUBINSKY

#	Article	IF	CITATIONS
1	Tiered Neuroscience and Mental Health Professional Development in Liberia Improves Teacher Self-Efficacy, Self-Responsibility, and Motivation. Frontiers in Human Neuroscience, 2021, 15, 664730.	2.0	9
2	Training-of-Trainers Neuroscience and Mental Health Teacher Education in Liberia Improves Self-Reported Support for Students. Frontiers in Human Neuroscience, 2021, 15, 653069.	2.0	7
3	Acceptability of Neuroscientific Interventions in Education. Science and Engineering Ethics, 2021, 27, 52.	2.9	3
4	Neuroscience Concepts Changed Teachers' Views of Pedagogy and Students. Frontiers in Psychology, 2021, 12, 685856.	2.1	13
5	Connecting the Dots from Professional Development to Student Learning. CBE Life Sciences Education, 2021, 20, ar57.	2.3	1
6	A crossed-disciplinary evaluation of parental perceptions surrounding pediatric non-invasive brain stimulation research. International Journal of Pharmaceutical and Healthcare Marketing, 2020, 14, 623-640.	1.3	1
7	Neuroscience knowledge enriches pedagogical choices. Teaching and Teacher Education, 2019, 83, 87-98.	3.2	31
8	Contributions of Neuroscience Knowledge to Teachers and Their Practice. Neuroscientist, 2019, 25, 394-407.	3.5	37
9	Learning Neuroscience with Technology: a Scaffolded, Active Learning Approach. Journal of Science Education and Technology, 2018, 27, 566-580.	3.9	5
10	Taking an educational psychology course improves neuroscience literacy but does not reduce belief in neuromyths. PLoS ONE, 2018, 13, e0192163.	2.5	50
11	Towards an Understanding of Energy Impairment in Huntington's Disease Brain. Journal of Huntington's Disease, 2017, 6, 267-302.	1.9	37
12	Oxygen consumption deficit in Huntington disease mouse brain under metabolic stress. Human Molecular Genetics, 2016, 25, ddw138.	2.9	26
13	Critical Response Protocol. The Science Teacher, 2016, 083, .	0.1	2
14	Brivaracetam augments shortâ€ŧerm depression and slows vesicle recycling. Epilepsia, 2015, 56, 1899-1909.	5.1	39
15	Seletracetam enhances short term depression in vitro. Epilepsy Research, 2015, 117, 17-22.	1.6	5
16	Active learning in a neuroethics course positively impacts moral judgment development in undergraduates. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2015, 13, A110-9.	0.0	2
17	Infusing Neuroscience Into Teacher Professional Development. Educational Researcher, 2013, 42, 317-329.	5.4	95
18	Decreased expression of <scp>GLT</scp> â€1 in the R6/2 model of Huntington's disease does not worsen disease progression. European Journal of Neuroscience, 2013, 38, 2477-2490.	2.6	41

JANET DUBINSKY

#	Article	IF	CITATIONS
19	Non-Invasive Measurement of Cerebral Oxygen Metabolism in the Mouse Brain by Ultra-High Field ¹⁷ 0 MR Spectroscopy. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1846-1849.	4.3	33
20	Neuroscientists' Classroom Visits Positively Impact Student Attitudes. PLoS ONE, 2013, 8, e84035.	2.5	27
21	Cortical Metabolites as Biomarkers in the R6/2 Model of Huntington's Disease. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 502-514.	4.3	59
22	Teaching Neuroscience to Science Teachers: Facilitating the Translation of Inquiry-Based Teaching Instruction to the Classroom. CBE Life Sciences Education, 2012, 11, 413-424.	2.3	26
23	Homeostatic Adaptations in Brain Energy Metabolism in Mouse Models of Huntington Disease. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1977-1988.	4.3	45
24	Neuroscience Education for Prekindergarten-12 Teachers. Journal of Neuroscience, 2010, 30, 8057-8060.	3.6	40
25	Heterogeneity of nervous system mitochondria: Location, location, location!. Experimental Neurology, 2009, 218, 293-307.	4.1	59
26	Neurochemical changes in Huntington R6/2 mouse striatum detected by <i>inÂvivo</i> ¹ H NMR spectroscopy. Journal of Neurochemistry, 2007, 100, 1397-1406.	3.9	104
27	Neuroscience in Middle Schools: A Professional Development and Resource Program That Models Inquiry-based Strategies and Engages Teachers in Classroom Implementation. CBE Life Sciences Education, 2006, 5, 144-157.	2.3	43
28	Age-Dependent Changes in the Calcium Sensitivity of Striatal Mitochondria in Mouse Models of Huntington's Disease. Journal of Neurochemistry, 2005, 93, 1361-1370.	3.9	87
29	Age-related changes in regional brain mitochondria from Fischer 344 rats. Aging Cell, 2005, 4, 139-145.	6.7	49
30	Protective Roles of CNS Mitochondria. Journal of Bioenergetics and Biomembranes, 2004, 36, 299-302.	2.3	7
31	Dearth of glutamate transporters contributes to striatal excitotoxicity. Experimental Neurology, 2004, 189, 222-230.	4.1	28
32	Increased Susceptibility of Striatal Mitochondria to Calcium-Induced Permeability Transition. Journal of Neuroscience, 2003, 23, 4858-4867.	3.6	150
33	Calcium-induced Cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. Journal of Neurochemistry, 2002, 80, 207-218.	3.9	221
34	On the mechanisms of neuroprotection by creatine and phosphocreatine. Journal of Neurochemistry, 2001, 76, 425-434.	3.9	117
35	Limitations of Cyclosporin A Inhibition of the Permeability Transition in CNS Mitochondria. Journal of Neuroscience, 2000, 20, 8229-8237.	3.6	155
36	Dual Responses of CNS Mitochondria to Elevated Calcium. Journal of Neuroscience, 2000, 20, 103-113.	3.6	130

JANET DUBINSKY

#	Article	IF	CITATIONS
37	EDTA-Induced Monovalent Fluxes through the Ca2+ Uniporter in Brain Mitochondria. Annals of the New York Academy of Sciences, 1999, 893, 258-260.	3.8	1
38	Calcium-induced activation of the mitochondrial permeability transition in hippocampal neurons. Journal of Neuroscience Research, 1998, 53, 728-741.	2.9	136
39	Calciumâ€induced activation of the mitochondrial permeability transition in hippocampal neurons. Journal of Neuroscience Research, 1998, 53, 728-741.	2.9	7
40	Mitochondrial Permeability Transition in the Central Nervous System: Induction by Calcium Cyclingâ€Đependent and â€Independent Pathways. Journal of Neurochemistry, 1997, 69, 524-538.	3.9	197
41	The Ability of Diphenylpiperazines to Prevent Neuronal Death in Dorsal Root Ganglion Neurons In Vitro After Nerve Growth Factor Deprivation and In Vivo After Axotomy. Journal of Neurochemistry, 1994, 62, 2148-2157.	3.9	22
42	Relationship of Intracellular Calcium to Dependence on Nerve Growth Factor in Dorsal Root Ganglion Neurons in Cell Culture. Journal of Neurochemistry, 1992, 58, 263-269.	3.9	48
43	Intracellular calcium concentrations during "chemical hypoxia" and excitotoxic neuronal injury. Journal of Neuroscience, 1991, 11, 2545-2551.	3.6	265
44	A role for cAMP in the development of functional neuromuscular transmission. Journal of Neurobiology, 1990, 21, 414-426.	3.6	8
45	Development of inhibitory synapses among striatal neurons in vitro. Journal of Neuroscience, 1989, 9, 3955-3965.	3.6	40
46	Formation of acetylcholine receptor clusters in chick myotubes: migration or new insertion?. Journal of Cell Biology, 1989, 109, 1733-1743.	5.2	36