Emmanuelle Maguin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/216272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bile Acids: Key Players in Inflammatory Bowel Diseases?. Cells, 2022, 11, 901.	4.1	19
2	Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms, 2022, 10, 949.	3.6	7
3	Development of Microbiome Biobanks – Challenges and Opportunities. Trends in Microbiology, 2021, 29, 89-92.	7.7	31
4	Multiple Selection Criteria for Probiotic Strains with High Potential for Obesity Management. Nutrients, 2021, 13, 713.	4.1	19
5	Identification of New Potential Biotherapeutics from Human Gut Microbiota-Derived Bacteria. Microorganisms, 2021, 9, 565.	3.6	16
6	Digestive Inflammation: Role of Proteolytic Dysregulation. International Journal of Molecular Sciences, 2021, 22, 2817.	4.1	10
7	Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health. Microorganisms, 2021, 9, 1122.	3.6	33
8	Gut Serpinome: Emerging Evidence in IBD. International Journal of Molecular Sciences, 2021, 22, 6088.	4.1	10
9	Tolerogenic Dendritic Cells Shape a Transmissible Gut Microbiota That Protects From Metabolic Diseases. Diabetes, 2021, 70, 2067-2080.	0.6	7
10	Microbiome innovations for a sustainable future. Nature Microbiology, 2021, 6, 138-142.	13.3	53
11	SP-1, a Serine Protease from the Gut Microbiota, Influences Colitis and Drives Intestinal Dysbiosis in Mice. Cells, 2021, 10, 2658.	4.1	4
12	Editorial: Probiotic Trigger Molecules in Action. Frontiers in Microbiology, 2021, 12, 789209.	3.5	0
13	Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nature Communications, 2020, 11, 3755.	12.8	97
14	In Vitro Characterization of Gut Microbiota-Derived Commensal Strains: Selection of Parabacteroides distasonis Strains Alleviating TNBS-Induced Colitis in Mice. Cells, 2020, 9, 2104.	4.1	43
15	Exploring the Bacterial Impact on Cholesterol Cycle: A Numerical Study. Frontiers in Microbiology, 2020, 11, 1121.	3.5	17
16	A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment. GigaScience, 2020, 9, .	6.4	35
17	Fatâ€Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeostasis in Mice Fed a Lowâ€Protein Diet. Molecular Nutrition and Food Research, 2020, 64, e1900835.	3.3	11
18	Fecal Serine Protease Profiling in Inflammatory Bowel Diseases. Frontiers in Cellular and Infection Microbiology, 2020, 10, 21.	3.9	62

Emmanuelle Maguin

#	Article	IF	CITATIONS
19	Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020, 8, 103.	11.1	903
20	Serine proteases at the cutting edge of IBD: Focus on gastrointestinal inflammation. FASEB Journal, 2020, 34, 7270-7282.	0.5	18
21	<i>para</i> -Sulphonato-calix[<i>n</i>]arene capped silver nanoparticles challenge the catalytic efficiency and the stability of a novel human gut serine protease inhibitor. Chemical Communications, 2019, 55, 8935-8938.	4.1	5
22	Glyphosate and glyphosateâ€based herbicide exposure during the peripartum period affects maternal brain plasticity, maternal behaviour and microbiome. Journal of Neuroendocrinology, 2019, 31, e12731.	2.6	69
23	Microbial Reduction of Cholesterol to Coprostanol: An Old Concept and New Insights. Catalysts, 2019, 9, 167.	3.5	28
24	Sildenafil citrate long-term treatment effects on cardiovascular reactivity in a SHR experimental model of metabolic syndrome. PLoS ONE, 2019, 14, e0223914.	2.5	6
25	The intestinal microbiota regulates host cholesterol homeostasis. BMC Biology, 2019, 17, 94.	3.8	125
26	Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. Journal of Lipid Research, 2019, 60, 323-332.	4.2	149
27	Serine protease inhibitors and human wellbeing interplay: new insights for old friends. PeerJ, 2019, 7, e7224.	2.0	20
28	Targeting the Gut Microbiota in Metabolic Disorders and Juvenile Growth. , 2019, , 441-462.		0
29	Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E334-E352.	3.5	119
30	Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats. Frontiers in Neuroscience, 2018, 12, 216.	2.8	179
31	Biotechnological Applications of Serine Proteases: A Patent Review. Recent Patents on Biotechnology, 2018, 12, 280-287.	0.8	4
32	Relevant Patented Biotechnological Applications of Ecotin: An Update. Recent Patents on Biotechnology, 2018, 12, 233-238.	0.8	0
33	Unprecedented large inverted repeats at the replication terminus of circular bacterial chromosomes suggest a novel mode of chromosome rescue. Scientific Reports, 2017, 7, 44331.	3.3	6
34	The Enterococcus faecalis virulence factor ElrA interacts with the human Four-and-a-Half LIM Domains Protein 2. Scientific Reports, 2017, 7, 4581.	3.3	9
35	Recent Patents on Hypocholesterolemic Therapeutic Strategies: An Update. Recent Advances in DNA & Gene Sequences, 2016, 9, 36-44.	0.7	2
36	Combining selected immunomodulatory <i>Propionibacterium freudenreichii</i> and <i>Lactobacillus delbrueckii</i> strains: Reverse engineering development of an antiâ€inflammatory cheese. Molecular Nutrition and Food Research, 2016, 60, 935-948.	3.3	60

#	Article	IF	CITATIONS
37	Siropins, novel serine protease inhibitors from gut microbiota acting on human proteases involved in inflammatory bowel diseases. Microbial Cell Factories, 2016, 15, 201.	4.0	33
38	A reference gene catalogue of the pig gut microbiome. Nature Microbiology, 2016, 1, 16161.	13.3	416
39	P1016 The pig's other genome: A reference gene catalog of the gut microbiome as a new resource for deep studies of the interplay between the host and its microbiome. Journal of Animal Science, 2016, 94, 22-22.	0.5	13
40	Beneficial metabolic effects of selected probiotics on dietâ€induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environmental Microbiology, 2016, 18, 1484-1497.	3.8	127
41	Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment. PLoS ONE, 2016, 11, e0159030.	2.5	9
42	The secreted l-arabinose isomerase displays anti-hyperglycemic effects in mice. Microbial Cell Factories, 2015, 14, 204.	4.0	12
43	Bacillus phytases: Current status and future prospects. Bioengineered, 2015, 6, 233-236.	3.2	15
44	Genome Sequence of " <i>Candidatus</i> Arthromitus―sp. Strain SFB-Mouse-NL, a Commensal Bacterium with a Key Role in Postnatal Maturation of Gut Immune Functions. Genome Announcements, 2014, 2, .	0.8	35
45	Genome Sequence of Lactobacillus delbrueckii subsp. <i>lactis</i> CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties. Genome Announcements, 2014, 2, .	0.8	4
46	Local and Systemic Immune Mechanisms Underlying the Anti-Colitis Effects of the Dairy Bacterium Lactobacillus delbrueckii. PLoS ONE, 2014, 9, e85923.	2.5	45
47	The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization. Applied Microbiology and Biotechnology, 2014, 98, 5937-5947.	3.6	24
48	Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action. BMC Genomics, 2014, 15, 407.	2.8	59
49	Discriminatory antibacterial effects of calix[n]arene capped silver nanoparticles with regard to Gram positive and Gram negative bacteria. Chemical Communications, 2013, 49, 7150.	4.1	21
50	Dietary intervention impact on gut microbial gene richness. Nature, 2013, 500, 585-588.	27.8	1,485
51	Crucial role of Pro 257 in the thermostability of Bacillus phytases: Biochemical and structural investigation. International Journal of Biological Macromolecules, 2013, 54, 9-15.	7.5	26
52	Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives. International Journal of Biological Macromolecules, 2013, 52, 125-132.	7.5	60
53	The acid tolerant and cold-active β-galactosidase from Lactococcus lactis strain is an attractive biocatalyst for lactose hydrolysis. Antonie Van Leeuwenhoek, 2013, 103, 701-712.	1.7	18
54	High-Throughput System for the Presentation of Secreted and Surface-Exposed Proteins from Gram-Positive Bacteria in Functional Metagenomics Studies. PLoS ONE, 2013, 8, e65956.	2.5	14

#	Article	IF	CITATIONS
55	Patented Biotechnological Applications of Serpin: an Update. Recent Patents on DNA & Gene Sequences, 2013, 7, 137-143.	0.7	8
56	Functional Metagenomics of Bacterial-Cell Crosstalk. , 2013, , 1-6.		0
57	Development of an EfficientIn VivoSystem (Pjunc-TpaseIS1223) for Random Transposon Mutagenesis of Lactobacillus casei. Applied and Environmental Microbiology, 2012, 78, 5417-5423.	3.1	27
58	Proteomic analysis of spontaneous mutants of <i><scp>L</scp>actococcus lactis</i> : Involvement of <scp>GAPDH</scp> and arginine deiminase pathway in H ₂ O ₂ resistance. Proteomics, 2012, 12, 1792-1805.	2.2	14
59	Anti-inflammatory properties of dairy lactobacilli. Inflammatory Bowel Diseases, 2012, 18, 657-666.	1.9	68
60	Heterologous expression and optimization using experimental designs allowed highly efficient production of the PHY US417 phytase in Bacillus subtilis 168. AMB Express, 2012, 2, 10.	3.0	27
61	Supramolecular stabilization of acid tolerant l-arabinose isomerase from Lactobacillus sakei. Chemical Communications, 2011, 47, 12307.	4.1	9
62	Enterotypes of the human gut microbiome. Nature, 2011, 473, 174-180.	27.8	5,800
63	Selection of Lactobacillus plantarum TN627 as a new probiotic candidate based on in vitro functional properties. Biotechnology and Bioprocess Engineering, 2011, 16, 1115-1123.	2.6	11
64	The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures. Microbial Cell Factories, 2011, 10, 96.	4.0	28
65	Production of d-tagatose, a low caloric sweetener during milk fermentation using l-arabinose isomerase. Bioresource Technology, 2011, 102, 3309-3315.	9.6	43
66	Bacterial L-Arabinose Isomerases: Industrial Application for D-Tagatose Production. Recent Patents on DNA & Gene Sequences, 2011, 5, 194-201.	0.7	13
67	The acid tolerant l-arabinose isomerase from the food grade Lactobacillus sakei 23K is an attractive d-tagatose producer. Bioresource Technology, 2010, 101, 9171-9177.	9.6	60
68	Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a β-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Research in Microbiology, 2010, 161, 515-525.	2.1	36
69	Postgenomic Analysis of <i>Streptococcus thermophilus</i> Cocultivated in Milk with <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> : Involvement of Nitrogen, Purine, and Iron Metabolism. Applied and Environmental Microbiology, 2009, 75, 2062-2073.	3.1	130
70	Prediction of surface exposed proteins in <i>Streptococcus pyogenes</i> , with a potential application to other Gramâ€positive bacteria. Proteomics, 2009, 9, 61-73.	2.2	123
71	Highly efficient production of the staphylococcal nuclease reporter in <i>Lactobacillus bulgaricus</i> governed by the promoter of the <i>hlbA</i> gene. FEMS Microbiology Letters, 2009, 293, 232-239.	1.8	11
72	Rational design of Bacillus stearothermophilus US100 l-arabinose isomerase: Potential applications for d-tagatose production. Biochimie, 2009, 91, 650-653.	2.6	44

Emmanuelle Maguin

#	Article	IF	CITATIONS
73	Exploring the acidotolerance of β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion. Research in Microbiology, 2009, 160, 775-784.	2.1	23
74	Physiology of <i>Streptococcus thermophilus</i> during the late stage of milk fermentation with special regard to sulfur aminoâ€acid metabolism. Proteomics, 2008, 8, 4273-4286.	2.2	50
75	Rerouting of pyruvate metabolism during acid adaptation in <i>Lactobacillus bulgaricus</i> . Proteomics, 2008, 8, 3154-3163.	2.2	93
76	Proteome phenotyping of acid stress-resistant mutants ofLactococcus lactis MG1363. Proteomics, 2007, 7, 2038-2046.	2.2	33
77	Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract. BMC Evolutionary Biology, 2007, 7, 141.	3.2	29
78	Genetic structure and transcriptional analysis of the arginine deiminase (ADI) cluster inLactococcus lactisMG1363. Canadian Journal of Microbiology, 2006, 52, 617-622.	1.7	25
79	Testing of a whole genome PCR scanning approach to identify genomic variability in four different species of lactic acid bacteria. Research in Microbiology, 2006, 157, 386-394.	2.1	3
80	Conservation of key elements of natural competence inLactococcus lactisssp FEMS Microbiology Letters, 2006, 257, 32-42.	1.8	37
81	AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system. Nucleic Acids Research, 2006, 34, 3533-3545.	14.5	84
82	Induction of Heavy-Metal-Transporting CPX-Type ATPases during Acid Adaptation in Lactobacillus bulgaricus. Applied and Environmental Microbiology, 2006, 72, 7445-7454.	3.1	28
83	Production of a Heterologous Nonheme Catalase by Lactobacillus casei : an Efficient Tool for Removal of H 2 O 2 and Protection of Lactobacillus bulgaricus from Oxidative Stress in Milk. Applied and Environmental Microbiology, 2006, 72, 5143-5149.	3.1	90
84	The complete genome sequence of <i>Lactobacillus bulgaricus</i> reveals extensive and ongoing reductive evolution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9274-9279.	7.1	382
85	Transcriptional analysis of the cyclopropane fatty acid synthase gene ofLactococcus lactisMG1363 at low pH. FEMS Microbiology Letters, 2005, 250, 189-194.	1.8	33
86	Proteomic characterization of the acid tolerance response inLactococcus lactis MG1363. Proteomics, 2005, 5, 4794-4807.	2.2	98
87	Characterization of urease genes cluster of Streptococcus thermophilus. Journal of Applied Microbiology, 2004, 96, 209-219.	3.1	78
88	Comparison of the thickening properties of fourLactobacillus delbrueckiisubsp.bulgaricusstrains and physicochemical characterization of their exopolysaccharides. FEMS Microbiology Letters, 2003, 221, 285-291.	1.8	66
89	csp-like genes ofLactobacillus delbrueckiissp.bulgaricusand their response to cold shock. FEMS Microbiology Letters, 2003, 226, 323-330.	1.8	15
90	Transposition in Lactobacillus delbrueckii subsp. bulgaricus: identification of two thermosensitive replicons and two functional insertion sequences. Microbiology (United Kingdom), 2003, 149, 1503-1511.	1.8	13

#	Article	IF	CITATIONS
91	Electrotransformation of <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> and <i>L. delbrueckii</i> subsp. <i>lactis</i> with Various Plasmids. Applied and Environmental Microbiology, 2002, 68, 46-52.	3.1	90
92	Lactic acid bacteria and proteomics: current knowledge and perspectives. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 771, 329-342.	2.3	63
93	Acid- and multistress-resistant mutants of Lactococcus lactis : identification of intracellular stress signals. Molecular Microbiology, 2002, 35, 517-528.	2.5	178
94	Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek, 2002, 82, 187-216.	1.7	598
95	Stress responses in lactic acid bacteria. , 2002, , 187-216.		28
96	Exopolysaccharides de Lactobacillus delbrueckii subsp. bulgaricus. Sciences Des Aliments, 2002, 22, 143-149.	0.2	1
97	Effect of a <i>guaA</i> mutation on the acid tolerance of <i>L. lactis</i> . Sciences Des Aliments, 2002, 22, 67-74.	0.2	3
98	Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek, 2002, 82, 187-216.	1.7	180
99	Identification and Disruption of Two Discrete Loci Encoding Hyaluronic Acid Capsule Biosynthesis GeneshasA, hasB, and hasC inStreptococcus uberis. Infection and Immunity, 2001, 69, 392-399.	2.2	82
100	Production of growth-inhibiting factors by Lactobacillus delbrueckii. Journal of Applied Microbiology, 2001, 91, 147-153.	3.1	49
101	Identification de protéines de stress chez Lactobacillus delbrueckii bulgaricus par électrophorèse bidimensionnelle. Dairy Science and Technology, 2001, 81, 317-325.	0.9	5
102	Identification of stress-inducible proteins inLactobacillus delbrueckii subsp.bulgaricus. Electrophoresis, 2000, 21, 2557-2561.	2.4	78
103	Physiological Study of Lactobacillus delbrueckii subsp. bulgaricus Strains in a Novel Chemically Defined Medium. Applied and Environmental Microbiology, 2000, 66, 5306-5311.	3.1	86
104	Mutants de Lactococcus lactis résistants à l'acidité. Dairy Science and Technology, 1998, 78, 157-163.	0.9	1
105	Isolation and Characterization of a Plasmid fromLactobacillus fermentumConferring Erythromycin Resistance. Plasmid, 1997, 37, 199-203.	1.4	81
106	Lactococcus lactis and stress. Antonie Van Leeuwenhoek, 1996, 70, 243-251.	1.7	158
107	Entry of Listeria monocytogenes into hepatocytes requires expression of InIB, a surface protein of the internalin multigene family. Molecular Microbiology, 1995, 16, 251-261.	2.5	464
108	An M protein with a single C repeat prevents phagocytosis of Streptococcus pyogenes: use of a temperature-sensitive shuttle vector to deliver homologous sequences to the chromosome of S. pyogenes. Molecular Microbiology, 1993, 8, 809-819.	2.5	228

#	Article	IF	CITATIONS
109	Plasmid Addiction Genes of Bacteriophage P1: doc, which Causes Cell Death on Curing of Prophage, and phd, which Prevents Host Death when Prophage is Retained. Journal of Molecular Biology, 1993, 233, 414-428.	4.2	263
110	Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Frontiers in Microbiology, 0, 13, .	3.5	10