Timothy E Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2162575/publications.pdf

Version: 2024-02-01

20817 25787 14,937 312 60 108 citations h-index g-index papers 323 323 323 14389 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Additive manufacturing of highâ€performance engineering polymers: present and future. Polymer International, 2022, 71, 532-536.	3.1	25
2	Characterization and structure-property relationships of an injectable thiol-Michael addition hydrogel toward compatibility with glioblastoma therapy. Acta Biomaterialia, 2022, 144, 266-278.	8.3	5
3	Vat Photopolymerization of Reinforced Styrene–Butadiene Elastomers: A Degradable Scaffold Approach. ACS Applied Materials & Interfaces, 2022, 14, 18965-18973.	8.0	11
4	Nurturing inclusivity: removing obstacles and valuing perspectives. Polymer International, 2022, 71, 499-500.	3.1	0
5	Melt polycondensation of carboxytelechelic polyethylene for the design of degradable segmented copolyester polyolefins. Polymer Chemistry, 2022, 13, 3116-3125.	3.9	10
6	The importance of sharing ideas: recognizing the 140th anniversary of <scp>SCI</scp> leadership. Polymer International, 2022, 71, 739-740.	3.1	0
7	Sustainable additive manufacturing: predicting binder jettability of <scp>waterâ€soluble</scp> , biodegradable and recyclable polymers. Polymer International, 2021, 70, 958-963.	3.1	10
8	UV-assisted direct ink write printing of fully aromatic Poly(amide imide)s: Elucidating the influence of an acrylic scaffold. Polymer, 2021, 212, 123306.	3.8	19
9	Influence of dianhydride regiochemistry on thermomechanical and rheological properties of $3,3\hat{a}\in^2$ and $4,4\hat{a}\in^2$ -polyetherimides. Polymer, 2021, 212, 123277.	3.8	3
10	Ageing of PBFâ€Grade Poly(Phenylene Sulfide) Powder and its Effect on Critical Printability Properties. Macromolecular Materials and Engineering, 2021, 306, 2000599.	3.6	3
11	Using fillers to tune material properties of an ion-containing semi-crystalline poly(ethylene glycol) for fused filament fabrication additive manufacturing. Additive Manufacturing, 2021, 39, 101844.	3.0	11
12	Predicting mechanical property plateau in laser polymer powder bed fusion additive manufacturing via the critical coalescence ratio. Materials and Design, 2021, 201, 109474.	7.0	11
13	Process-structure–property relationships following thermo-oxidative exposure of powder bed fusion printed poly(phenylene sulfide). MRS Communications, 2021, 11, 179-188.	1.8	2
14	3D Printing Carbonaceous Objects from Polyimide Pyrolysis. ACS Macro Letters, 2021, 10, 412-418.	4.8	14
15	Vat photopolymerization of unsaturated polyesters utilizing a polymerizable ionic liquid as a non-volatile reactive diluent. Polymer, 2021, 223, 123727.	3.8	10
16	Nonâ€isocyanate Polyurethanes from 1,1′â€Carbonyldiimidazole: A Polycondensation Approach. Macromolecular Rapid Communications, 2021, 42, e2100163.	3.9	13
17	Hydroxyethylresorcinol- and hydroxyethylhydroquinone-containing poly(ethylene terephthalate) copolymers. Polymer, 2021, 228, 123890.	3.8	2
18	Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Carbamate Exchange Carbamate Exchange Carbamate Ca	8.0	18

#	Article	IF	CITATIONS
19	Quadruple Hydrogen Bond-Containing A-AB-A Triblock Copolymers: Probing the Influence of Hydrogen Bonding in the Central Block. Molecules, 2021, 26, 4705.	3.8	6
20	Supramolecular Salts for Additive Manufacturing of Polyimides. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48061-48070.	8.0	9
21	Impact of metal cations on the thermal, mechanical, and rheological properties of telechelic sulfonated polyetherimides. Polymer Chemistry, 2020, 11, 393-400.	3.9	10
22	Facile Preparation of Halogen-Free Poly(ether imide) Containing Phosphonium and Sulfonate Groups. ACS Applied Polymer Materials, 2020, 2, 66-73.	4.4	4
23	Thiol–ene addition enables tailored synthesis of poly(2â€oxazoline)―graft â€poly(vinyl pyrrolidone) copolymers for binder jetting 3D printing. Polymer International, 2020, 69, 902-911.	3.1	7
24	Phosphonium-Based Polyzwitterions: Influence of Ionic Structure and Association on Mechanical Properties. Macromolecules, 2020, 53, 11009-11018.	4.8	15
25	Phosphonated Poly(ethylene terephthalate) ionomers as compatibilizers in extruded Poly(ethylene) Tj ${\sf ETQq1\ 1\ C}$).784314 ı 3.8	$^{\circ}$ gBT $^{\prime}$ Overloc
26	Deciphering the 3D Microstructures of a Doubly Charged Homopolymer through a Complementary Correlation of Monomer Crystallography and Polymer Powder X-ray Diffraction. Macromolecules, 2020, 53, 6529-6537.	4.8	2
27	Novel Electrospun Pullulan Fibers Incorporating Hydroxypropyl-β-Cyclodextrin: Morphology and Relation with Rheological Properties. Polymers, 2020, 12, 2558.	4.5	9
28	Light and latex: advances in the photochemistry of polymer colloids. Polymer Chemistry, 2020, 11, 3498-3524.	3.9	22
29	Isocyanate- and solvent-free synthesis of melt processible polyurea elastomers derived from urea as a monomer. RSC Advances, 2020, 10, 18760-18768.	3.6	17
30	Quadruple Hydrogen Bonding Supramolecular Elastomers for Melt Extrusion Additive Manufacturing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32006-32016.	8.0	41
31	Polymer-inorganic hybrid colloids for ultraviolet-assisted direct ink write of polymer nanocomposites. Additive Manufacturing, 2020, 35, 101393.	3.0	19
32	3D Printing Latex: A Route to Complex Geometries of High Molecular Weight Polymers. ACS Applied Materials & Distribution (1998)	8.0	46
33	Synthesis and Characterization of Long-Chain Branched Poly(ether imide)s with A3 Comonomers. ACS Applied Polymer Materials, 2020, 2, 958-965.	4.4	5
34	Vat photopolymerization of liquid, biodegradable PLGA-based oligomers as tissue scaffolds. European Polymer Journal, 2020, 130, 109693.	5.4	22
35	Determination of glass transition temperature of polyimides from atomistic molecular dynamics simulations and <scp>machineâ€learning</scp> algorithms. Journal of Polymer Science, 2020, 58, 1521-1534.	3.8	24
36	<i>110th Anniversary</i> : Vat Photopolymerization-Based Additive Manufacturing: Current Trends and Future Directions in Materials Design. Industrial & Engineering Chemistry Research, 2019, 58, 15109-15118.	3.7	80

3

#	Article	IF	Citations
37	Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Progress in Polymer Science, 2019, 97, 101144.	24.7	169
38	Mechanically Strong, Thermally Stable, and Flame Retardant Poly(ether imide) Terminated with Phosphonium Bromide. Macromolecules, 2019, 52, 7361-7368.	4.8	14
39	Additive Manufacturing of Hydrocarbon Elastomers via Simultaneous Chain Extension and Cross-linking of Hydrogenated Polybutadiene. ACS Applied Polymer Materials, 2019, 1, 684-690.	4.4	30
40	Synthesis and characterization of a nematic fully aromatic polyester based on biphenyl 3,4â \in 2-dicarboxylic acid. Polymer Chemistry, 2019, 10, 4287-4296.	3.9	9
41	Comparison of Linear and 4-Arm Star Poly(vinyl pyrrolidone) for Aqueous Binder Jetting Additive Manufacturing of Personalized Dosage Tablets. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23938-23947.	8.0	51
42	Tuning the material properties of a water-soluble ionic polymer using different counterions for material extrusion additive manufacturing. Polymer, 2019, 176, 283-292.	3.8	16
43	Powder bed fusion of poly(phenylene sulfide) at bed temperatures significantly below melting. Additive Manufacturing, 2019, 28, 506-516.	3.0	18
44	Semiâ€Crystalline Polymer Blends for Material Extrusion Additive Manufacturing Printability: A Case Study with Poly(ethylene terephthalate) and Polypropylene. Macromolecular Materials and Engineering, 2019, 304, 1800764.	3.6	35
45	A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Progress in Polymer Science, 2019, 93, 68-95.	24.7	177
46	Compatibilization of Polyester/Polyamide Blends with a Phosphonated Poly(ethylene terephthalate) lonomer: Comparison of Monovalent and Divalent Pendant Ions. ACS Applied Polymer Materials, 2019, 1, 1071-1080.	4.4	11
47	Vat photopolymerization of charged monomers: 3D printing with supramolecular interactions. Polymer Chemistry, 2019, 10, 1442-1451.	3.9	46
48	Tailoring the glassy mesophase range of thermotropic polyesters through copolymerization of 4,4â \in ^M -bibenzoate and kinked isomer. Polymer, 2019, 163, 125-133.	3.8	13
49	Doubly Charged ABA Triblock Copolymers: Thermomechanically Robust Physical Network and Hierarchical Microstructures. Macromolecules, 2019, 52, 9168-9176.	4.8	10
50	Amorphous copolyesters based on bibenzoic acids and neopentyl glycol. Journal of Polymer Science Part A, 2019, 57, 579-587.	2.3	8
51	Charge Transport in Imidazolium-Based Homo- and Triblock Poly(ionic liquid)s. Macromolecules, 2019, 52, 620-628.	4.8	13
52	Advanced Polymers for Reduced Energy Consumption in Architecture. Macromolecular Rapid Communications, 2019, 40, 1800597.	3.9	4
53	Quadruple hydrogen bonding containing supramolecular thermoplastic elastomers: Mechanical and morphological correlations. Journal of Polymer Science Part A, 2019, 57, 13-23.	2.3	15
54	3D Printing Amorphous Polysiloxane Terpolymers via Vat Photopolymerization. Macromolecular Chemistry and Physics, 2019, 220, 1800425.	2.2	33

#	Article	IF	CITATIONS
55	Vat photopolymerization 3D printing of acid-cleavable PEG-methacrylate networks for biomaterial applications. Materials Today Communications, 2019, 19, 204-211.	1.9	59
56	Influence of Bibenzoate Regioisomers on Cyclohexanedimethanol-Based (Co)polyester Structure–Property Relationships. Macromolecules, 2019, 52, 835-843.	4.8	13
57	Advances in Polymeric Materials for Electromechanical Devices. Macromolecular Rapid Communications, 2019, 40, e1800521.	3.9	47
58	Acetyl-protected cytosine and guanine containing acrylics as supramolecular adhesives. Journal of Adhesion, 2019, 95, 146-167.	3.0	7
59	Functional siloxanes with photo-activated, simultaneous chain extension and crosslinking for lithography-based 3D printing. Polymer, 2018, 152, 25-34.	3.8	64
60	Polymerized ionic liquids: Effects of counterâ€anions on ion conduction and polymerization kinetics. Journal of Polymer Science Part A, 2018, 56, 1346-1357.	2.3	20
61	3D Printing All-Aromatic Polyimides Using Stereolithographic 3D Printing of Polyamic Acid Salts. ACS Macro Letters, 2018, 7, 493-497.	4.8	79
62	Electrospinning of plant oilâ€based, nonâ€isocyanate polyurethanes for biomedical applications. Journal of Applied Polymer Science, 2018, 135, 46464.	2.6	19
63	Addressing water scarcity: cationic polyelectrolytes in water treatment and purification. Polymer International, 2018, 67, 799-814.	3.1	47
64	Speaking Different Languages: From Molecules to Manufacturing. Polymer International, 2018, 67, 5-6.	3.1	0
65	Model analysis of feedstock behavior in fused filament fabrication: Enabling rapid materials screening. Polymer, 2018, 152, 51-61.	3 . 8	77
66	Hydrocarbonâ€Soluble Piperazineâ€Containing Dilithium Anionic Initiator for High <i>Cis</i> i>â€1,4 Isoprene Polymerization. Macromolecular Chemistry and Physics, 2018, 219, 1700201.	2.2	7
67	Synthesis and characterization of isocyanate-free polyureas. Green Chemistry, 2018, 20, 243-249.	9.0	40
68	Enhanced scattering induced by electrostatic correlations in concentrated solutions of salt-free dipolar and ionic polymers. Journal of Chemical Physics, 2018, 149, 163336.	3.0	8
69	Printing nanomaterials in shrinking gels. Science, 2018, 362, 1244-1245.	12.6	7
70	Ultraviolet-Assisted Direct Ink Write to Additively Manufacture All-Aromatic Polyimides. ACS Applied Materials & Direct Ink Write to Additively Manufacture All-Aromatic Polyimides. ACS Applied Materials & Direct Ink Write to Additively Manufacture All-Aromatic Polyimides. ACS Applied Materials & Direct Ink Write to Additively Manufacture All-Aromatic Polyimides. ACS Applied Materials & Direct Ink Write to Additively Manufacture All-Aromatic Polyimides. ACS Applied Materials & Direct Ink Write to Additively Manufacture All-Aromatic Polyimides. ACS Applied Materials & Direct Ink Write to Additively Manufacture All-Aromatic Polyimides. ACS Applied Materials & Direct Ink Write to Additively Manufacture All-Aromatic Polyimides. ACS Applied Materials & Direct Ink Write to Additively Manufacture All-Aromatic Polyimides.	8.0	69
71	Suitability of 3D-Printed devices for low-temperature geochemical experiments. Applied Geochemistry, 2018, 98, 121-126.	3.0	7
72	Nanoscale Resolution of Electric-field Induced Motion in Ionic Diblock Copolymer Thin Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32678-32687.	8.0	9

#	Article	IF	Citations
73	Urea as a monomer for isocyanate-free synthesis of segmented poly(dimethyl siloxane) polyureas. Polymer, 2018, 154, 225-232.	3.8	37
74	Synthesis and characterization of phosphonated Poly(ethylene terephthalate) ionomers. Polymer, 2018, 151, 154-163.	3.8	11
75	Reversibly Cross-linkable Bottlebrush Polymers as Pressure-Sensitive Adhesives. ACS Applied Materials & 2018, 10, 26662-26668.	8.0	50
76	Sugarâ€Derived Poly(βâ€thioester)s as a Biomedical Scaffold. Macromolecular Chemistry and Physics, 2018, 219, 1800177.	2.2	16
77	Additive manufacturing of pharmaceuticals for precision medicine applications: A review of the promises and perils in implementation. Additive Manufacturing, 2018, 23, 319-328.	3.0	36
78	Synthesis of urea ontaining ABA triblock copolymers: Influence of pendant hydrogen bonding on morphology and thermomechanical properties. Journal of Polymer Science Part A, 2018, 56, 1844-1852.	2.3	10
79	Advances in phosphonium-based ionic liquids and poly(ionic liquid)s as conductive materials. European Polymer Journal, 2018, 108, 28-37.	5.4	48
80	Copolyesters based on bibenzoic acids. Polymer, 2018, 135, 120-130.	3.8	11
81	Reaction: Benign by Design Demands Innovation. CheM, 2017, 2, 7-8.	11.7	1
82	Poly(\hat{l}^2 -thioesters) containing monodisperse oxamide hard segments using a chemoselective thiol-Michael addition reaction. Polymer Chemistry, 2017, 8, 2598-2608.	3.9	14
83	Segmented imidazolium ionenes: Solution rheology, thermomechanical properties, and electrospinning. Polymer, 2017, 114, 257-265.	3.8	23
84	Characterization of peptide coatings adhered to synthetic fibers: A versatile model for peptide nucleic acids. International Journal of Adhesion and Adhesives, 2017, 75, 17-22.	2.9	1
85	3D Printing Allâ€Aromatic Polyimides using Maskâ€Projection Stereolithography: Processing the Nonprocessable. Advanced Materials, 2017, 29, 1701240.	21.0	131
86	Synthesis of Polysulfone-Containing Poly(butylene terephthalate) Segmented Block Copolymers: Influence of Segment Length on Thermomechanical Performance. Macromolecules, 2017, 50, 5107-5113.	4.8	8
87	Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials, 2017, 140, 170-188.	11.4	339
88	Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12324-12331.	8.0	25
89	TIPS pentacene loaded PEO-PDLLA core-shell nanoparticles have similar cellular uptake dynamics in M1 and M2 macrophages and in corresponding in vivo microenvironments. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1255-1266.	3.3	13
90	Synthesis and Characterization of Amorphous Bibenzoate (Co)polyesters: Permeability and Rheological Performance. Macromolecules, 2017, 50, 7603-7610.	4.8	23

#	Article	IF	Citations
91	Influence of cyclobutane segments in cycloaliphatic decahydronaphthalene-containing copolyesters. High Performance Polymers, 2017, 29, 750-756.	1.8	12
92	3D Printing Polymers with Supramolecular Functionality for Biological Applications. Biomacromolecules, 2017, 18, 2669-2687.	5 . 4	90
93	Thiol-Michael â€~click' hydrogels as an imageable packing material for cancer therapy. Polymer, 2017, 125, 66-75.	3.8	20
94	Living anionic polymerization of 4â€diphenylphosphino styrene for ABC triblock copolymers. Polymer International, 2017, 66, 52-58.	3.1	4
95	Synthesis of Water-Soluble Imidazolium Polyesters as Potential Nonviral Gene Delivery Vehicles. Biomacromolecules, 2017, 18, 68-76.	5.4	15
96	Controlled radical polymerization of anthracene-containing methacrylate copolymers for stimuli-responsive materials. Journal of Polymer Science Part A, 2016, 54, 2302-2311.	2.3	10
97	Diphenylphosphino Styreneâ€Containing Homopolymers: Influence of Alkylation and Mobile Anions on Physical Properties. Macromolecular Rapid Communications, 2016, 37, 1212-1217.	3.9	7
98	Non-isocyanate poly(amide-hydroxyurethane)s from sustainable resources. Green Chemistry, 2016, 18, 4667-4681.	9.0	74
99	Styrenic DABCO salt-containing monomers for the synthesis of novel charged polymers. Polymer Chemistry, 2016, 7, 3370-3374.	3.9	27
100	Influence of nucleobase stoichiometry on the self-assembly of ABC triblock copolymers. Chemical Communications, 2016, 52, 7564-7567.	4.1	19
101	Doubly-Charged Ionomers with Enhanced Microphase-Separation. Macromolecules, 2016, 49, 6965-6972.	4.8	12
102	Ureido cytosine and cytosine-containing acrylic copolymers. Polymer Chemistry, 2016, 7, 6671-6681.	3.9	25
103	Supercritical Fluid Chromatography with Evaporative Light Scattering Detection (SFC-ELSD) for Determination of Oligomer Molecular Weight Distributions. Chromatographia, 2016, 79, 977-984.	1.3	6
104	Imidazolium-Containing ABA Triblock Copolymers as Electroactive Devices. ACS Applied Materials & Interfaces, 2016, 8, 1280-1288.	8.0	40
105	Phosphonium-containing diblock copolymers from living anionic polymerization of 4-diphenylphosphino styrene. Chemical Communications, 2016, 52, 950-953.	4.1	10
106	Hydrogen bond containing multiwalled carbon nanotubes in polyurethane composites. Polymer Composites, 2016, 37, 1425-1434.	4.6	7
107	High-Performance Segmented Liquid Crystalline Copolyesters. Macromolecular Chemistry and Physics, 2015, 216, 1754-1763.	2.2	12
108	Free radical polymerization of caffeineâ€containing methacrylate monomers. Journal of Polymer Science Part A, 2015, 53, 2829-2837.	2.3	4

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Decahydronaphthalene-Containing Polyesters. Macromolecules, 2015, 48, 8733-8737.	4.8	24
110	Amide-containing segmented copolymers. Progress in Polymer Science, 2015, 45, 1-22.	24.7	73
111	Nucleobase-functionalized acrylic ABA triblock copolymers and supramolecular blends. Polymer Chemistry, 2015, 6, 2434-2444.	3.9	49
112	Imidazole-containing triblock copolymers with a synergy of ether and imidazolium sites. Journal of Materials Chemistry C, 2015, 3, 3891-3901.	5 . 5	27
113	Sulfonimide-Containing Triblock Copolymers for Improved Conductivity and Mechanical Performance. Macromolecules, 2015, 48, 4520-4528.	4.8	103
114	3D-Printable Biodegradable Polyester Tissue Scaffolds for Cell Adhesion. Australian Journal of Chemistry, 2015, 68, 1409.	0.9	17
115	Polymeric Imidazoles and Imidazoliums in Nanomedicine: Comparison to Ammoniums and Phosphoniums., 2015,, 231-266.		1
116	Synthesis and Characterization of Polysulfone-Containing Poly(butylene terephthalate) Segmented Block Copolymers. Macromolecules, 2014, 47, 8171-8177.	4.8	19
117	3D Printing Phosphonium Ionic Liquid Networks with Mask Projection Microstereolithography. ACS Macro Letters, 2014, 3, 1205-1209.	4.8	91
118	Influence of Counterion on Thermal, Viscoelastic, and Ion Conductive Properties of Phosphonium Ionenes. Macromolecular Symposia, 2014, 342, 56-66.	0.7	9
119	Wellâ€Defined Imidazolium ABA Triblock Copolymers as Ionicâ€Liquidâ€Containing Electroactive Membranes. Macromolecular Chemistry and Physics, 2014, 215, 1319-1331.	2.2	36
120	Synthesis and characterization of poly(propylene glycol) polytrioxamide and poly(urea oxamide) segmented copolymers. Polymer International, 2014, 63, 1184-1191.	3.1	13
121	RAFT polymerization of temperature- and salt-responsive block copolymers as reversible hydrogels. Polymer, 2014, 55, 2325-2331.	3.8	22
122	Toward Recyclable Thermosets. Science, 2014, 344, 706-707.	12.6	62
123	Synthesis, Properties, and Applications of Ionâ€Containing Polyurethane Segmented Copolymers. Macromolecular Chemistry and Physics, 2014, 215, 2161-2174.	2.2	58
124	Nucleobase-functionalized ABC triblock copolymers: self-assembly of supramolecular architectures. Chemical Communications, 2014, 50, 9145-9148.	4.1	39
125	Thermal and living anionic polymerization of 4-vinylbenzyl piperidine. Polymer Chemistry, 2014, 5, 6003-6011.	3.9	5
126	Solution properties and electrospinning of phosphonium gemini surfactants. Soft Matter, 2014, 10, 3970-3977.	2.7	22

#	Article	IF	CITATIONS
127	Water-dispersible cationic polyurethanes containing pendant trialkylphosphoniums. Polymer Chemistry, 2014, 5, 3795-3803.	3.9	39
128	Phosphonium cation-containing polymers: From ionic liquids to polyelectrolytes. Polymer, 2014, 55, 3298-3304.	3.8	74
129	Association of Nucleobaseâ€Containing Ammonium Ionenes. Macromolecular Chemistry and Physics, 2014, 215, 2337-2344.	2.2	9
130	The preparation of cation-functionalized multi-wall carbon nanotube/sulfonated polyurethane composites. Carbon, 2013, 54, 133-142.	10.3	19
131	Synthesis and Properties of Sulfonium Polyelectrolytes for Biological Applications. ACS Macro Letters, 2013, 2, 731-735.	4.8	38
132	Synthesis and characterization of siloxane-containing poly(ureaÂoxamide) segmented copolymers. Polymer, 2013, 54, 4849-4857.	3.8	33
133	Effects of Copolymer Structure on the Mechanical Properties of Poly(dimethyl siloxane) Poly(oxamide) Segmented Copolymers. Macromolecular Chemistry and Physics, 2013, 214, 2073-2082.	2.2	21
134	Synthesis of Folic Acidâ€Containing Imidazolium Copolymers for Potential Gene Delivery Applications. Macromolecular Chemistry and Physics, 2013, 214, 797-805.	2.2	12
135	Influence of charge placement on the thermal and morphological properties ofÂsulfonated segmented copolyesters. Polymer, 2013, 54, 3521-3528.	3.8	14
136	Comparing Ammonium and Phosphonium Polymerized Ionic Liquids: Thermal Analysis, Conductivity, and Morphology. Macromolecular Chemistry and Physics, 2013, 214, 2099-2107.	2.2	87
137	Polyurethanes Containing an Imidazolium Diolâ€Based Ionicâ€Liquid Chain Extender for Incorporation of Ionicâ€Liquid Electrolytes. Macromolecular Chemistry and Physics, 2013, 214, 1027-1036.	2.2	62
138	Poly(ethylene glycol)-based ammonium ionenes containing nucleobases. Polymer, 2013, 54, 1588-1595.	3.8	21
139	Synthesis and characterization of 4-vinylimidazole ABA triblock copolymers utilizing a difunctional RAFT chain transfer agent. Polymer Chemistry, 2013, 4, 2333.	3.9	25
140	Hydroxyalkyl-Containing Imidazolium Homopolymers: Correlation of Structure with Conductivity. Macromolecules, 2013, 46, 3037-3045.	4.8	52
141	Phosphonium ionenes from well-defined step-growth polymerization: thermal and melt rheological properties. Polymer Chemistry, 2013, 4, 3582.	3.9	52
142	Photoactive Polyesters Containing <i>>o </i> >Nitro Benzyl Ester Functionality for Photodeactivatable Adhesion. Journal of Adhesion, 2013, 89, 548-558.	3.0	15
143	Phosphonium-Containing Diblock Copolymers for Enhanced Colloidal Stability and Efficient Nucleic Acid Delivery. Biomacromolecules, 2012, 13, 2439-2445.	5.4	72
144	Phosphonium-Containing Polyelectrolytes for Nonviral Gene Delivery. Biomacromolecules, 2012, 13, 231-238.	5.4	85

#	Article	IF	Citations
145	RAFT Synthesis of ABA Triblock Copolymers as Ionic Liquid-Containing Electroactive Membranes. ACS Applied Materials & Electroactive Mem	8.0	46
146	Synthesis of Imidazolium-Containing ABA Triblock Copolymers: Role of Charge Placement, Charge Density, and Ionic Liquid Incorporation. Macromolecules, 2012, 45, 4749-4757.	4.8	69
147	Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers. Polymer, 2012, 53, 3677-3686.	3.8	80
148	Electrospinning of radical polymers: redox-active fibrous membrane formation. Polymer Journal, 2012, 44, 264-268.	2.7	11
149	Imidazolium sulfonate-containing pentablock copolymer–ionic liquid membranes for electroactive actuators. Journal of Materials Chemistry, 2012, 22, 13473.	6.7	86
150	Nucleobase Self-Assembly in Supramolecular Adhesives. Macromolecules, 2012, 45, 805-812.	4.8	119
151	lonic aggregation in random copolymers containing phosphonium ionic liquid monomers. Journal of Polymer Science Part A, 2012, 50, 166-173.	2.3	49
152	Correlating backboneâ€toâ€backbone distance to ionic conductivity in amorphous polymerized ionic liquids. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 338-346.	2.1	122
153	A perspective on emerging polymer technologies for bisphenolâ€A replacement. Polymer International, 2012, 61, 1485-1491.	3.1	95
154	Segmented block copolyesters using click chemistry. Journal of Polymer Science Part A, 2012, 50, 3797-3805.	2.3	19
155	Melt transesterification and characterization of segmented block copolyesters containing 2,2,4,4â€tetramethylâ€1,3â€cyclobutanediol. Journal of Polymer Science Part A, 2012, 50, 3710-3718.	2.3	33
156	Structure–Property Relationships of Waterâ€Soluble Ammonium–Ionene Copolymers. Macromolecular Chemistry and Physics, 2012, 213, 965-972.	2.2	25
157	Controlled Radical Polymerization of 4-Vinylimidazole. Macromolecules, 2012, 45, 3669-3676.	4.8	62
158	Influence of ionic charge placement on performance of poly(ethylene glycol)-based sulfonated polyurethanes. Polymer, 2012, 53, 1203-1211.	3.8	42
159	Synthesis and solution rheology of adenine-containing polyelectrolytes for electrospinning. Polymer, 2012, 53, 1437-1443.	3.8	6
160	DNAâ€Inspired Hierarchical Polymer Design: Electrostatics and Hydrogen Bonding in Concert. Macromolecular Bioscience, 2012, 12, 29-39.	4.1	22
161	Neutral hydrophilic cathode catalyst binders for microbial fuel cells. Energy and Environmental Science, 2011, 4, 928-934.	30.8	50
162	Thermal, Rheological, and Ion-Transport Properties of Phosphonium-Based Ionic Liquids. Journal of Physical Chemistry A, 2011, 115, 13829-13835.	2.5	57

#	Article	IF	CITATIONS
163	Influence of Zwitterions on Thermomechanical Properties and Morphology of Acrylic Copolymers: Implications for Electroactive Applications. Macromolecules, 2011, 44, 8056-8063.	4.8	49
164	Tailoring Charge Density and Hydrogen Bonding of Imidazolium Copolymers for Efficient Gene Delivery. Biomacromolecules, 2011, 12, 2243-2250.	5.4	70
165	Phosphonium-Containing ABA Triblock Copolymers: Controlled Free Radical Polymerization of Phosphonium Ionic Liquids. Macromolecules, 2011, 44, 6509-6517.	4.8	84
166	Polymers from Fatty Acids: Poly(î‰-hydroxyl tetradecanoic acid) Synthesis and Physico-Mechanical Studies. Biomacromolecules, 2011, 12, 3291-3298.	5.4	106
167	Alkylâ€Substituted <i>N</i> àâ€Vinylimidazolium Polymerized Ionic Liquids: Thermal Properties and Ionic Conductivities. Macromolecular Chemistry and Physics, 2011, 212, 2522-2528.	2.2	139
168	Tailoring macromolecular architecture with imidazole functionality: A perspective for controlled polymerization processes. European Polymer Journal, 2011, 47, 486-496.	5.4	54
169	Introduction of Multiple Hydrogen Bonding for Enhanced Mechanical Performance of Polymer-Carbon Nanotube Composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 1016-1021.	2.2	12
170	Polymer processing and characterization of LLDPE films loaded with αâ€tocopherol, quercetin, and their cyclodextrin inclusion complexes. Journal of Applied Polymer Science, 2010, 117, 2299-2309.	2.6	64
171	lonene segmented block copolymers containing imidazolium cations: Structure–property relationships as a function of hard segment content. Polymer, 2010, 51, 1252-1257.	3.8	50
172	Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer, 2010, 51, 2447-2454.	3.8	333
173	Poly(propylene glycol)â€based ammonium ionenes as segmented ionâ€containing block copolymers. Journal of Polymer Science Part A, 2010, 48, 4159-4167.	2.3	17
174	Oligomeric A ₂ + B ₃ synthesis of highly branched polysulfone ionomers: novel candidates for ionic polymer transducers. Polymer International, 2010, 59, 25-35.	3.1	18
175	Photo-Reactive Polyimides and Poly(siloxane imide)s as Reversible Polymeric Interfaces. Journal of Adhesion, 2010, 86, 1012-1028.	3.0	7
176	Melt Synthesis and Characterization of Aliphatic Low-T _g Polyesters as Pressure Sensitive Adhesives. Journal of Adhesion, 2010, 86, 395-408.	3.0	22
177	Influence of Counteranion on the Thermal and Solution Behavior of Poly(2-(dimethylamino)ethyl) Tj ETQq1 1 0.78	4314 rgBT 4.8	 <u> O</u> verlock
178	Gemini Surfactant Electrospun Membranes. Langmuir, 2010, 26, 678-683.	3.5	60
179	Effect of Ionic Liquid on Mechanical Properties and Morphology of Zwitterionic Copolymer Membranes. Macromolecules, 2010, 43, 790-796.	4.8	61
180	Synthesis and Characterization of Novel Segmented Polyionenes Based on Polydimethylsiloxane Soft Segments. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 215-224.	2.2	10

#	Article	IF	CITATIONS
181	Influence of Hydrogen Bonding on the Adhesive Properties of Photo-Curable Acrylics. Journal of Adhesion, 2009, 85, 1-17.	3.0	11
182	Ionomer design for augmented charge transport in novel ionic polymer transducers. Smart Materials and Structures, 2009, 18, 104005.	3.5	19
183	Synthesis of 12,12â€Ammonium Ionenes with Functionality for Chain Extension and Crossâ€Linking <i>via</i> UV Irradiation. Macromolecular Chemistry and Physics, 2009, 210, 555-564.	2.2	15
184	Microphaseâ€Separated Poly(vinylpyridine) Block Copolymer Prepared with a Novel Bifunctional Initiator. Macromolecular Chemistry and Physics, 2009, 210, 579-584.	2.2	21
185	Melt Dispersion and Electrospinning of Nonâ€Functionalized Multiwalled Carbon Nanotubes in Thermoplastic Polyurethane. Macromolecular Rapid Communications, 2009, 30, 2102-2106.	3.9	42
186	Protonatable Ionenes for Nucleic Acid Complexation. Macromolecular Bioscience, 2009, 9, 1127-1134.	4.1	6
187	Michael addition for crosslinking of poly(caprolactone)s. Journal of Polymer Science Part A, 2009, 47, 5437-5447.	2.3	22
188	Electrospinning zwitterion-containing nanoscale acrylic fibers. Polymer, 2009, 50, 4781-4787.	3.8	21
189	Recent advances in the synthesis and structure–property relationships of ammonium ionenes. Progress in Polymer Science, 2009, 34, 762-782.	24.7	118
190	Ring-Opening Polymerization of Imidazole Epoxides for the Synthesis of Imidazole-Substituted Poly(ethylene oxides). Macromolecules, 2009, 42, 8010-8012.	4.8	12
191	Synthesis of Diazocine-Containing Poly(arylene ether sulfone)s for Tailored Mechanical and Electrochemical Performance. Macromolecules, 2009, 42, 1526-1532.	4.8	27
192	Influence of Polycation Molecular Weight on Poly(2-dimethylaminoethyl methacrylate)-Mediated DNA Delivery In Vitro. Biomacromolecules, 2009, 10, 1244-1252.	5.4	128
193	Designing Imidazole-Based Ionic Liquids and Ionic Liquid Monomers for Emerging Technologies. Polymer Reviews, 2009, 49, 291-314.	10.9	270
194	Synthesis and Characterization of Poly(ethylene glycol)â^'Glutathione Conjugate Self-Assembled Nanoparticles for Antioxidant Delivery. Biomacromolecules, 2009, 10, 155-161.	5.4	69
195	Electrospinning functional nanoscale fibers: a perspective for the future. Polymer International, 2008, 57, 385-389.	3.1	109
196	Poly(caprolactone) containing highly branched segmented poly(ester urethane)s via A ₂ with oligomeric B ₃ polymerization. Journal of Polymer Science Part A, 2008, 46, 6285-6295.	2.3	34
197	Pseudoâ€Living Anionic Telomerization of Butaâ€1,3â€diene. Macromolecular Chemistry and Physics, 2008, 209, 1983-1991.	2.2	4
198	Influence of Site-Specific Sulfonation on Acrylic Graft Copolymer Morphology. Macromolecules, 2008, 41, 3503-3512.	4.8	20

#	Article	IF	Citations
199	Synthesis and Characterization of Aliphatic Ammonium Ionenes: Aqueous Size Exclusion Chromatography for Absolute Molecular Weight Characterization. Macromolecules, 2008, 41, 4635-4641.	4.8	50
200	Effect of Hyperbranched Surface-Migrating Additives on the Electrospinning Behavior of Poly(methyl) Tj ETQq0	0 0 ʒgBT /0	Overlock 10 Tr
201	Synthesis and Morphology of Segmented Poly(tetramethylene oxide)-Based Polyurethanes Containing Phosphonium Salts. Macromolecules, 2008, 41, 9072-9079.	4.8	76
202	Synthesis and Characterization of Well-Defined 12,12-Ammonium Ionenes: Evaluating Mechanical Properties as a Function of Molecular Weight. Macromolecules, 2008, 41, 5216-5222.	4.8	46
203	Beyond Nafion: Charged Macromolecules Tailored for Performance as Ionic Polymer Transducers. Macromolecules, 2008, 41, 7765-7775.	4.8	124
204	Taking Advantage of Tailored Electrostatics and Complementary Hydrogen Bonding in the Design of Nanostructures for Biomedical Applications. Macromolecular Symposia, 2008, 270, 1-7.	0.7	34
205	Photodimerization of Coumarin Functionalized Poly(alkyl Acrylate) and Poly(alkyl Methacrylate) Random Copolymers: Influence of Copolymer Composition on Photocrosslinking. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 45, 9-15.	2.2	17
206	Michael Addition Reaction Kinetics of Acetoacetates and Acrylates for the Formation of Polymeric Networks. Progress in Reaction Kinetics and Mechanism, 2007, 32, 165-194.	2.1	19
207	Super-Hydrophobic Surfaces via Micrometer-Scale Templated Pillars. Chemistry of Materials, 2007, 19, 6145-6149.	6.7	51
208	Association of Star-Shaped Poly(d,l-lactide)s Containing Nucleobase Multiple Hydrogen Bonding. Biomacromolecules, 2007, 8, 302-308.	5.4	61
209	Submicron functional fibrous scaffolds based on electrospun phospholipids. Journal of Materials Chemistry, 2007, 17, 605-608.	6.7	23
210	Multiple Hydrogen Bonding for the Noncovalent Attachment of Ionic Functionality in Triblock Copolymers. Macromolecules, 2007, 40, 4396-4398.	4.8	40
211	Supramolecular Triblock Copolymers Containing Complementary Nucleobase Molecular Recognition. Macromolecules, 2007, 40, 6834-6845.	4.8	116
212	Charged Polymers via Controlled Radical Polymerization and their Implications for Gene Delivery. Macromolecular Chemistry and Physics, 2007, 208, 1243-1249.	2.2	41
213	Synthesis of an Acidâ€Labile Diacrylate Crosslinker for Cleavable Michael Addition Networks. Macromolecular Chemistry and Physics, 2007, 208, 1949-1955.	2.2	17
214	Morphological Analysis of Telechelic Ureidopyrimidone Functional Hydrogen Bonding Linear and Starâ€Shaped Poly(ethyleneâ€ <i>co</i> â€propylene)s. Macromolecular Rapid Communications, 2007, 28, 1601-1606.	3.9	39
215	Nano- and bulk-tack adhesive properties of stimuli-responsive, fullerene–polymer blends, containing polystyrene-block-polybutadiene-block-polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives. Polymer, 2007, 48, 6773-6781.	3.8	44
216	Novel michael addition networks containing urethane hydrogen bonding. Journal of Polymer Science Part A, 2007, 45, 4118-4128.	2.3	17

#	Article	IF	CITATIONS
217	Synthesis and Characterization of Star-Shaped Poly(ethylene-co-propylene) Polymers Bearing Terminal Self-Complementary Multiple Hydrogen-Bonding Sites. Macromolecules, 2006, 39, 3132-3139.	4.8	47
218	Porous Thin Films Based on Photo-Cross-Linked Star-Shaped Poly(d,l-lactide)s. Langmuir, 2006, 22, 9687-9693.	3.5	56
219	Phospholipid Nonwoven Electrospun Membranes. Science, 2006, 311, 353-355.	12.6	271
220	Highly Branched Poly(ether ester)s via Cyclization-Free Melt Condensation of A2Oligomers and B3Monomers. Macromolecules, 2006, 39, 2788-2793.	4.8	61
221	Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science, 2006, 31, 487-531.	24.7	928
222	Solution Rheological Behavior and Electrospinning of Cationic Polyelectrolytes. Macromolecules, 2006, 39, 575-583.	4.8	190
223	Synthesis and characterization of telechelic phosphine oxide polyesters and cobalt(II) chloride complexes. Polymer, 2006, 47, 4085-4093.	3.8	16
224	Synthesis and characterization of triglyceride-based polyols and tack-free coatings via the air oxidation of soy oil. Journal of Applied Polymer Science, 2006, 102, 690-697.	2.6	21
225	Highly Branched Poly(arylene ether)s via Oligomeric A2 + B3 Strategies. Macromolecular Chemistry and Physics, 2006, 207, 576-586.	2.2	27
226	Degree of Branching of Highly Branched Polyurethanes Synthesized via theOligomeric A2 Plus B3 Methodology. Macromolecular Chemistry and Physics, 2006, 207, 1197-1206.	2.2	39
227	Novel Michael Addition Networks Containing Poly(propylene glycol) Telechelic Oligomers. Macromolecular Chemistry and Physics, 2006, 207, 1324-1333.	2.2	25
228	Multiple Hydrogen Bonding for Reversible Polymer Surface Adhesion. Langmuir, 2006, 22, 1099-1105.	3.5	40
229	Taking Advantage of Supramolecular Structure in Melt and Solution Electrospinning. Materials Research Society Symposia Proceedings, 2006, 948, 1.	0.1	2
230	Branched polyesters: recent advances in synthesis and performance. Progress in Polymer Science, 2005, 30, 507-539.	24.7	268
231	Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer, 2005, 46, 2011-2015.	3.8	82
232	Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 2005, 46, 4799-4810.	3.8	707
233	Crystallization of photo-chain extended poly(ethylene glycol). European Polymer Journal, 2005, 41, 219-224.	5.4	9

A comparative study of the structureâ€"property behavior of highly branched segmented poly(urethane) Tj ETQq0 9.8 rgBT /9yerlock 10

#	Article	IF	Citations
235	Influence of tertiary diamines on the synthesis of high-molecular-weight poly(1,3-cyclohexadiene). Journal of Polymer Science Part A, 2005, 43, 1216-1227.	2.3	9
236	Silicon surface modification with trialkoxysilyl-functionalized star-shaped polymers. Journal of Polymer Science Part A, 2005, 43, 3655-3666.	2.3	27
237	Synthesis and characterization of poly(2-ethylhexyl methacrylate) copolymers containing pendant, self-complementary multiple-hydrogen-bonding sites. Journal of Polymer Science Part A, 2005, 43, 4618-4631.	2.3	74
238	Development of a Light-Deactivatable PSA <i>Via</i> Photodimerization. Journal of Adhesion, 2005, 81, 213-229.	3.0	48
239	Tailoring the Degree of Branching: Preparation of Poly(ether ester)s via Copolymerization of Poly(ethylene glycol) Oligomers (A2) and 1,3,5-Benzenetricarbonyl Trichloride (B3). Macromolecules, 2005, 38, 3246-3254.	4.8	68
240	Influence of Random Branching on Multiple Hydrogen Bonding in Poly(alkyl methacrylate)s. Macromolecules, 2005, 38, 6015-6023.	4.8	65
241	Probing the Hard Segment Phase Connectivity and Percolation in Model Segmented Poly(urethane) Tj ETQq1 1 C).784314 r 4.8	gBT /Overloo
242	Influence of Peripheral Hydrogen Bonding on the Mechanical Properties of Photo-Cross-Linked Star-Shaped Poly(d,I-lactide) Networks. Biomacromolecules, 2005, 6, 2866-2874.	5.4	59
243	Synthesis of Chain End Functionalized Multiple Hydrogen Bonded Polystyrenes and Poly(alkyl) Tj ETQq1 1 0.784.	314 rgBT /	Overlock 10
244	Novel dinitroxide mediating agent for stable free-radical polymerization. Journal of Polymer Science Part A, 2004, 42, 1547-1556.	2.3	17
245	Determination of monomer reactivity ratios usingin situ FTIR spectroscopy for maleic anhydride/norbornene-free-radical copolymerization. Journal of Applied Polymer Science, 2004, 92, 3240-3246.	2.6	13
246	Synthesis of Norbornene Derivatives by Diels-Alder Cycloaddition and Subsequent Copolymerization with Maleic Anhydride. Macromolecular Chemistry and Physics, 2004, 205, 621-627.	2.2	11
247	Stable Free Radical Polymerization Kinetics of Alkyl Acrylate Monomers Using in situ FTIR Spectroscopy: Influence of Hydroxyl-Containing Monomers and Additives. Macromolecular Chemistry and Physics, 2004, 205, 692-698.	2.2	20
248	Photoreversible Chain Extension of Poly(ethylene glycol). Macromolecular Chemistry and Physics, 2004, 205, 715-723.	2.2	69
249	Preparation of segmented, high molecular weight, aliphatic poly(ether-urea) copolymers in isopropanol. In-situ FTIR studies and polymer synthesis. Polymer, 2004, 45, 5829-5836.	3.8	47
250	Influence of self-complementary hydrogen bonding on solution rheology/electrospinning relationships. Polymer, 2004, 45, 8705-8715.	3.8	133
251	Thermoreversible Polyesters Consisting of Multiple Hydrogen Bonding (MHB). Macromolecules, 2004, 37, 3519-3522.	4.8	90
252	Living Anionic Polymerization of Hexamethylcyclotrisiloxane (D3) Using Functionalized Initiation. Macromolecules, 2004, 37, 6657-6659.	4.8	30

#	Article	IF	CITATIONS
253	Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. Macromolecules, 2004, 37, 1760-1767.	4.8	594
254	Coumarins in Polymers:  From Light Harvesting to Photo-Cross-Linkable Tissue Scaffolds. Chemical Reviews, 2004, 104, 3059-3078.	47.7	721
255	In Situ Photo-Cross-Linking of Cinnamate Functionalized Poly(methyl methacrylate-co-2-hydroxyethyl) Tj ETQq1	1 0 ₄ 784314	rgBT /Over 147
256	Thermoreversible Poly(alkyl acrylates) Consisting of Self-Complementary Multiple Hydrogen Bonding. Macromolecules, 2003, 36, 1083-1088.	4.8	262
257	Stable Free-Radical Polymerization of Styrene in Combination with 2-Vinylnaphthalene Initiation. Macromolecular Chemistry and Physics, 2003, 204, 570-576.	2.2	20
258	Oxidation and epoxidation of poly(1,3-cyclohexadiene). Journal of Polymer Science Part A, 2003, 41, 84-93.	2.3	23
259	Synthesis and characterization of chiral liquid-crystalline polyesters containing sugar-based diols via melt polymerization. Journal of Polymer Science Part A, 2003, 41, 2512-2520.	2.3	37
260	Synthesis and cleavage of core-labile poly(alkyl methacrylate) star polymers. Journal of Polymer Science Part A, 2003, 41, 3083-3093.	2.3	38
261	Polymerization of A2 with B3 Monomers:  A Facile Approach to Hyperbranched Poly(aryl ester)s. Macromolecules, 2003, 36, 9809-9816.	4.8	128
262	Synthesis of Poly(Arylene Ether)s., 2003,, 327-374.		20
263	Polyesters. , 2003, , 17-134.		19
264	Polyurethanes and Polyureas., 2003,, 197-263.		13
265	Polyimides and Other High-Temperature Polymers. , 2003, , 265-326.		41
266	Depolymerization and Recycling., 2003,, 527-574.		3
267	Synthesis and characterization of poly(ethylene glycol) methyl ether endcapped poly(ethylene) Tj ETQq1 1 0.784	314_rgBT 0.7	Oyerlock 10
268	Nontraditional Step-Growth Polymerization: Transition Metal Coupling. , 2003, , 467-526.		10
269	Polyamides. , 2003, , 135-195.		13
270	Chemistry and Properties of Phenolic Resins and Networks. , 2003, , 375-430.		4

#	Article	IF	Citations
271	Introduction to Synthetic Methods in Step-Growth Polymers. , 2003, , 1-16.		15
272	Nontraditional Step-Growth Polymerization: ADMET. , 2003, , 431-466.		4
273	Moisture-Curing Kinetics of Isocyanate Prepolymer Adhesives. Journal of Adhesion, 2002, 78, 297-312.	3.0	20
274	Synthesis and Characterization of Telechelic Poly(ethylene terephthalate) Sodiosulfonate Ionomers. Macromolecules, 2002, 35, 8738-8744.	4.8	47
275	Combinations of Microphase Separation and Terminal Multiple Hydrogen Bonding in Novel Macromolecules. Journal of the American Chemical Society, 2002, 124, 8599-8604.	13.7	147
276	Synthesis and Characterization of Novel Complementary Multiple-Hydrogen Bonded (CMHB) Macromolecules via a Michael Addition. Macromolecules, 2002, 35, 8745-8750.	4.8	81
277	Investigations of the Adhesion of Maleic Anhydride/Cyclic Olefin Alternating Copolymers to Silicon Substrates: Improved Materials for 193 nm Lithography. Journal of Adhesion, 2002, 78, 1-13.	3.0	7
278	Synthesis and characterization of sulfonated liquid crystalline polyesters. Polymer International, 2002, 51, 540-546.	3.1	12
279	Investigations of thermal polymerization in the stable free-radical polymerization of 2-vinylnaphthalene. Journal of Polymer Science Part A, 2002, 40, 583-590.	2.3	17
280	Maleation of poly(3,4-epoxy-1-butene) for accelerated crosslinking in the presence of a redox catalyst. Journal of Polymer Science Part A, 2002, 40, 2789-2798.	2.3	0
281	Fundamental Investigations of the Free Radical Copolymerization and Terpolymerization of Maleic Anhydride, Norbornene, and Norbornenetert-Butyl Ester:Â In-Situ Mid-Infrared Spectroscopic Analysis. Macromolecules, 2001, 34, 8064-8071.	4.8	21
282	Synthesis and Characterization of Poly(1,3-cyclohexadiene) Homopolymers and Star-Shaped Polymers. Macromolecules, 2001, 34, 2108-2114.	4.8	56
283	Synthesis and characterization of novel acid-sensitive tert-butyl methacrylate and isobutyl methacrylate containing star-shaped polymers. , 2001, , .		2
284	Synthesis of star-shaped polystyrenes via nitroxide-mediated stable free-radical polymerization. Journal of Polymer Science Part A, 2001, 39, 216-223.	2.3	79
285	Synthesis of starâ€shaped polystyrenes via nitroxideâ€mediated stable freeâ€radical polymerization. Journal of Polymer Science Part A, 2001, 39, 216-223.	2.3	2
286	Synthesis and characterization of a novel AB2 monomer and corresponding hyperbranched poly(arylene ether phosphine oxide)s. Journal of Polymer Science Part A, 2000, 38, 3736-3741.	2.3	48
287	Real-Time Monitoring of the Stable Free Radical Polymerization of Styrene via in-Situ Mid-Infrared Spectroscopy. Macromolecules, 1999, 32, 7954-7957.	4.8	43
288	Methacrylate-based block ionomers I: Synthesis of block ionomers derived from t-butyl methacrylate and alkyl methacrylates. Polymer International, 1994, 33, 205-216.	3.1	20

#	Article	IF	CITATIONS
289	Synthesis and characterization of well-defined star polymers via a controlled sol-gel process. Macromolecules, 1991, 24, 1431-1434.	4.8	16
290	Poly(Ethylene Terephthalate) Polymerization– Mechanism, Catalysis, Kinetics, Mass Transfer and Reactor Design. , 0, , 29-115.		13
291	Amorphous and Crystalline Polyesters Based on 1,4-Cyclohexanedimethanol., 0,, 267-292.		7
292	Recycling Polyesters by Chemical Depolymerization., 0,, 563-590.		5
293	Synthesis and Polymerization of Cyclic Polyester Oligomers. , 0, , 117-142.		9
294	The Historical Development of Polyesters. , 0, , 1-28.		3
295	Synthesis, Properties and Applications of Poly(Trimethylene Terephthalate)., 0,, 361-397.		18
296	Preparation, Properties and Applications of Unsaturated Polyesters., 0,, 697-713.		9
297	Polyester Fibers: Fiber Formation and End-Use Applications. , 0, , 399-433.		3
298	Poly(Butylene Terephthalate)., 0,, 293-321.		9
299	Relationship between Polyester Quality and Processability: Hands-On Experience. , 0, , 435-493.		O
300	Continuous Solid-State Polycondensation of Polyesters. , 0, , 143-194.		9
301	Biaxially Oriented Poly(Ethylene 2,6-Naphthalene) Films: Manufacture, Properties and Commercial Applications., 0,, 335-360.		2
302	Thermoplastic Polyester Composites. , 0, , 541-562.		0
303	High-Performance Liquid Crystal Polyesters with Controlled Molecular Structure., 0,, 643-664.		0
304	Additives for the Modification of Poly(Ethylene Terephthalate) to Produce Engineering-Grade Polymers., 0,, 495-540.		8
305	Controlled Degradation Polyesters., 0,, 591-608.		2
306	Photodegradation of Poly(Ethylene Terephthalate) and Poly(Ethylene/1,4-Cyclohexylenedimethylene) Tj ETQq0 0	O rgBT /O	verlock 10 Tf

TIMOTHY E LONG

#	Article	IF	CITATIONS
307	Thermotropic Liquid Crystal Polymer Reinforced Polyesters. , 0, , 665-696.		2
308	PEER Polymers: New Unsaturated Polyesters for Fiber-Reinforced Composite Materials., 0,, 715-731.		2
309	Solid-State Polycondensation of Polyester Resins: Fundamentals and Industrial Production. , 0, , 195-242.		2
310	New Poly(Ethylene Terephthalate) Copolymers. , 0, , 243-265.		2
311	Properties and Applications of Poly(Ethylene 2,6-Naphthalene), Its Copolyesters and Blends. , 0, , 323-334.		1
312	Hydrogen Bond Functionalized Block Copolymers and Telechelic Oligomers., 0,, 63-102.		0