Mikel Garcia-Marcos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2161597/publications.pdf

Version: 2024-02-01

61 papers 5,396 citations

218677 26 h-index 53 g-index

67 all docs

67
docs citations

67 times ranked

10968 citing authors

#	Article	IF	CITATIONS
1	DAPLE orchestrates apical actomyosin assembly from junctional polarity complexes. Journal of Cell Biology, 2022, 221, .	5.2	4
2	Development of Transgenic Mouse Models for the Expression of Optical Biosensors of Endogenous G Protein Activity. FASEB Journal, 2022, 36, .	0.5	O
3	Identification of Peptide Inhibitors of Gαs that Block its Effector Binding Site. FASEB Journal, 2022, 36, .	0.5	O
4	Complementary biosensors reveal different G-protein signaling modes triggered by GPCRs and non-receptor activators. ELife, 2021, 10, .	6.0	12
5	Do All Roads Lead to Rome in G-Protein Activation?. Trends in Biochemical Sciences, 2020, 45, 182-184.	7.5	17
6	Receptor tyrosine kinases activate heterotrimeric G proteins via phosphorylation within the interdomain cleft of $Gl\pm i$. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28763-28774.	7.1	19
7	Naturally occurring hotspot cancer mutations in $\widehat{Gl}\pm 13$ promote oncogenic signaling. Journal of Biological Chemistry, 2020, 295, 16897-16904.	3.4	19
8	Revealing the Activity of Trimeric G-proteins in Live Cells with a Versatile Biosensor Design. Cell, 2020, 182, 770-785.e16.	28.9	58
9	DAPLE protein inhibits nucleotide exchange on Gαs and Gαq via the same motif that activates Gαi. Journal of Biological Chemistry, 2020, 295, 2270-2284.	3.4	14
10	Probing the mutational landscape of regulators of G protein signaling proteins in cancer. Science Signaling, 2020, 13 , .	3.6	17
11	Optogenetic activation of heterotrimeric G-proteins by LOV2GIVe, a rationally engineered modular protein. ELife, 2020, 9, .	6.0	14
12	DAPLE and MPDZ bind to each other and cooperate to promote apical cell constriction. Molecular Biology of the Cell, 2019, 30, 1900-1910.	2.1	20
13	GPCR-independent activation of G proteins promotes apical cell constriction in vivo. Journal of Cell Biology, 2019, 218, 1743-1763.	5.2	21
14	Profiling Gαq Cancer Mutations Using a Novel BRETâ€based Biosensor. FASEB Journal, 2019, 33, 668.8.	0.5	0
15	When Heterotrimeric G Proteins Are Not Activated by G Protein-Coupled Receptors: Structural Insights and Evolutionary Conservation. Biochemistry, 2018, 57, 255-257.	2.5	31
16	Atypical activation of the G protein $\widehat{Gl}\pm q$ by the oncogenic mutation Q209P. Journal of Biological Chemistry, 2018, 293, 19586-19599.	3.4	28
17	A biochemical and genetic discovery pipeline identifies PLCδ4b as a nonreceptor activator of heterotrimeric G-proteins. Journal of Biological Chemistry, 2018, 293, 16964-16983.	3.4	20
18	Making useful gadgets with miniaturized G proteins. Journal of Biological Chemistry, 2018, 293, 7474-7475.	3.4	5

#	Article	IF	Citations
19	Molecular mechanism of GÎ \pm i activation by non-GPCR proteins with a GÎ \pm -Binding and Activating motif. Nature Communications, 2017, 8, 15163.	12.8	39
20	The Gαi-GIV binding interface is a druggable protein-protein interaction. Scientific Reports, 2017, 7, 8575.	3.3	15
21	Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10319-E10328.	7.1	21
22	Rapid kinetic BRET measurements to monitor G protein activation by GPCR and non-GPCR proteins. Methods in Cell Biology, 2017, 142, 145-157.	1.1	7
23	Fluorescence polarization assays to measure interactions between \widehat{G} subunits of heterotrimeric G proteins and regulatory motifs. Methods in Cell Biology, 2017, 142, 133-143.	1.1	2
24	Dominant-negative $\hat{Gl}\pm$ subunits are a mechanism of dysregulated heterotrimeric G protein signaling in human disease. Science Signaling, 2016, 9, ra37.	3.6	28
25	Membrane Recruitment of the Non-receptor Protein GIV/Girdin ($\hat{Gl\pm}$ -interacting, Vesicle-associated) Tj ETQq1 1 Chemistry, 2016, 291, 27098-27111.	0.784314 3.4	rgBT Overloc 20
26	GIV/Girdin activates $\hat{Gl}_{\pm i}$ and inhibits $\hat{Gl}_{\pm s}$ via the same motif. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5721-30.	7.1	33
27	Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation. Molecular Biology and Evolution, 2016, 33, 820-837.	8.9	32
28	GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Creates a Positive Feedback Loop That Potentiates Outside-in Integrin Signaling in Cancer Cells. Journal of Biological Chemistry, 2016, 291, 8269-8282.	3.4	25
29	GIV/Girdin Transmits Signals from Multiple Receptors by Triggering Trimeric G Protein Activation. Journal of Biological Chemistry, 2015, 290, 6697-6704.	3.4	75
30	Integrins activate trimeric G proteins via the nonreceptor protein GIV/Girdin. Journal of Cell Biology, 2015, 210, 1165-1184.	5.2	37
31	Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration–proliferation dichotomy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4874-83.	7.1	52
32	Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling. ELife, 2015, 4, e07091.	6.0	104
33	Evolutionarily Divergent Proteins Utilize the G(alpha)â€Binding and Activating Motif as a Conserved Module for Trimeric G Protein Activation. FASEB Journal, 2015, 29, 893.3.	0.5	0
34	Towards the Identification of Small Molecule Inhibitors of the GIVâ€Gi Interaction as Potential Antiâ€metastatic Drugs. FASEB Journal, 2015, 29, 618.2.	0.5	0
35	Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin. Molecular Biology of the Cell, 2014, 25, 3654-3671.	2.1	54
36	Different Biochemical Properties Explain Why Two Equivalent Gα Subunit Mutants Cause Unrelated Diseases. Journal of Biological Chemistry, 2014, 289, 21818-21827.	3.4	16

#	Article	IF	Citations
37	Hsp70–Bag3 Interactions Regulate Cancer-Related Signaling Networks. Cancer Research, 2014, 74, 4731-4740.	0.9	141
38	Protein kinase C-theta (PKCÎ) phosphorylates and inhibits the guanine exchange factor, GIV/Girdin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5510-5515.	7.1	35
39	Identification of a novel activator of GOAâ€1, a trimeric G protein critical for early stages of C. elegans development. FASEB Journal, 2013, 27, 1094.3.	0.5	О
40	Functional characterization of the guanine nucleotide exchange factor (GEF) motif of GIV protein reveals a threshold effect in signaling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1961-1966.	7.1	51
41	Gî±s promotes EEA1 endosome maturation and shuts down proliferative signaling through interaction with GIV (Girdin). Molecular Biology of the Cell, 2012, 23, 4623-4634.	2.1	44
42	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
43	G Protein Binding Sites on Calnuc (Nucleobindin 1) and NUCB2 (Nucleobindin 2) Define a New Class of G $$ ±i-regulatory Motifs. Journal of Biological Chemistry, 2011, 286, 28138-28149.	3.4	47
44	Tyrosine Phosphorylation of the Gα-Interacting Protein GIV Promotes Activation of Phosphoinositide 3-Kinase During Cell Migration. Science Signaling, 2011, 4, ra64.	3.6	78
45	A GDI (AGS3) and a GEF (GIV) regulate autophagy by balancing G protein activity and growth factor signals. Molecular Biology of the Cell, 2011, 22, 673-686.	2.1	111
46	GIV/Girdin is a rheostat that fine-tunes growth factor signals during tumor progression. Cell Adhesion and Migration, 2011, 5, 237-248.	2.7	51
47	Src Homology Domain 2-containing Protein-tyrosine Phosphatase-1 (SHP-1) Binds and Dephosphorylates Gα-interacting, Vesicle-associated Protein (GİV)/Girdin and Attenuates the GIV-Phosphatidylinositol 3-Kinase (PI3K)-Akt Signaling Pathway. Journal of Biological Chemistry, 2011, 286, 32404-32415.	3.4	34
48	Expression of GIV/Girdin, a metastasisâ€related protein, predicts patient survival in colon cancer. FASEB Journal, 2011, 25, 590-599.	0.5	68
49	A Gαi–GIV Molecular Complex Binds Epidermal Growth Factor Receptor and Determines Whether Cells Migrate or Proliferate. Molecular Biology of the Cell, 2010, 21, 2338-2354.	2.1	148
50	A Structural Determinant That Renders $\widehat{Gl}_{\pm i}$ Sensitive to Activation by GIV/Girdin Is Required to Promote Cell Migration. Journal of Biological Chemistry, 2010, 285, 12765-12777.	3.4	77
51	GIV is a nonreceptor GEF for $\widehat{Gl}\pm i$ with a unique motif that regulates Akt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3178-3183.	7.1	173
52	Membrane compartments and purinergic signalling: the role of plasma membrane microdomains in the modulation of P2XRâ€mediated signalling. FEBS Journal, 2009, 276, 330-340.	4.7	27
53	Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands. Purinergic Signalling, 2008, 4, 347-55.	2.2	20
54	Activation of $\widehat{Gl}\pm i3$ triggers cell migration via regulation of GIV. Journal of Cell Biology, 2008, 182, 381-393.	5.2	140

#	Article	IF	CITATION
55	Gαi3 and GIV Cooperatively Regulate Akt signaling and Actin remodeling. FASEB Journal, 2008, 22, 284-284.	0.5	0
56	Activation of a Gαi3â€GIVâ€Molecularâ€Switch Triggers Cell Migration. FASEB Journal, 2008, 22, 283-283.	0.5	0
57	Contribution of two ionotropic purinergic receptors to ATP responses in submandibular gland ductal cells. Cellular Signalling, 2007, 19, 2155-2164.	3. 6	21
58	Characterization and comparison of raft-like membranes isolated by two different methods from rat submandibular gland cells. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 796-806.	2.6	29
59	P2X7 and phospholipid signalling: The search of the "missing link―in epithelial cells. Cellular Signalling, 2006, 18, 2098-2104.	3.6	45
60	Coupling of two pools of P2X7 receptors to distinct intracellular signaling pathways in rat submandibular gland. Journal of Lipid Research, 2006, 47, 705-714.	4.2	51
61	Modulation by LL-37 of the Responses of Salivary Glands to Purinergic Agonists. Molecular Pharmacology, 2006, 69, 2037-2046.	2.3	24