Jin Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/216096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphometric measurements can improve prediction of progressive vertebral deformity following vertebral damage. European Spine Journal, 2022, 31, 70-78.	2.2	0
2	Opposing patterns in self-reported and measured physical activity levels in middle-aged adults. European Journal of Ageing, 2022, 19, 567-573.	2.8	4
3	A predictive model for creep deformation following vertebral compression fractures. Bone, 2020, 141, 115595.	2.9	1
4	How Does Obesity Influence the Risk of Vertebral Fracture? Findings From the UK Biobank Participants. JBMR Plus, 2020, 4, e10358.	2.7	12
5	Changes of the adjacent discs and vertebrae in patients with osteoporotic vertebral compression fractures treated with or without bone cement augmentation. Spine Journal, 2020, 20, 1048-1055.	1.3	16
6	Effects of bone damage on creep behaviours of human vertebral trabeculae. Bone, 2018, 106, 204-210.	2.9	7
7	Pattern of physical activity can influence its efficacy on muscle and bone health in middle-aged men and women. Sport Sciences for Health, 2018, 14, 503-509.	1.3	2
8	Effects of Body Mass Index on Bone Loading Due to Physical Activity. Journal of Applied Biomechanics, 2018, 34, 7-13.	0.8	0
9	Passive elastic contribution of hip extensors to joint moments during walking in people with low back pain. Clinical Biomechanics, 2018, 60, 134-140.	1.2	12
10	How are adjacent spinal levels affected by vertebral fracture and by vertebroplasty? A biomechanical study on cadaveric spines. Spine Journal, 2017, 17, 863-874.	1.3	26
11	Vertebroplasty reduces progressive ׳creep' deformity of fractured vertebrae. Journal of Biomechanics, 2016, 49, 869-874.	2.1	9
12	Spine Curvature Analysis between Participants with Obesity and Normal Weight Participants: A Biplanar Electromagnetic Device Measurement. BioMed Research International, 2014, 2014, 1-7.	1.9	15
13	ISSLS Prize Winner. Spine, 2014, 39, 1365-1372.	2.0	72
14	Loading dose of physical activity is related to muscle strength and bone density in middle-aged women. Bone, 2014, 67, 41-45.	2.9	49
15	An Accelerometry-Based Approach to Assess Loading Intensity of Physical Activity on Bone. Research Quarterly for Exercise and Sport, 2014, 85, 245-250.	1.4	16
16	Intervertebral Disc Decompression Following Endplate Damage. Spine, 2013, 38, 1473-1481.	2.0	90
17	Vertebral deformity arising from an accelerated "creep―mechanism. European Spine Journal, 2012, 21, 1684-1691.	2.2	23
18	Mechanical Function of Vertebral Body Osteophytes, as Revealed by Experiments on Cadaveric Spines. Spine, 2011, 36, 770-777.	2.0	64

Jin Luo

#	Article	IF	CITATIONS
19	Time-Dependent Compressive Deformation of the Ageing Spine. Spine, 2010, 35, 386-394.	2.0	47
20	Vertebroplasty and Kyphoplasty Can Restore Normal Spine Mechanics following Osteoporotic Vertebral Fracture. Journal of Osteoporosis, 2010, 2010, 1-9.	0.5	21
21	Is kyphoplasty better than vertebroplasty in restoring normal mechanical function to an injured spine?. Bone, 2010, 46, 1050-1057.	2.9	23
22	Vertebral fractures in the elderly may not always be "osteoporotic― Bone, 2010, 47, 111-116.	2.9	42
23	Bone creep can cause progressive vertebral deformity. Bone, 2009, 45, 466-472.	2.9	58
24	Vertebroplasty. Spine, 2009, 34, 2865-2873.	2.0	56
25	Influence of Resistance Load on Neuromuscular Response to Vibration Training. Journal of Strength and Conditioning Research, 2009, 23, 420-426.	2.1	13
26	Effect of vibration training on neuromuscular output with ballistic knee extensions. Journal of Sports Sciences, 2008, 26, 1365-1373.	2.0	10
27	Effect of Vibration Training in Maximal Effort (70% 1RM) Dynamic Bicep Curls. Medicine and Science in Sports and Exercise, 2007, 39, 526-533.	0.4	36
28	Mechanical efficacy of vertebroplasty: Influence of cement type, BMD, fracture severity, and disc degeneration. Bone, 2007, 40, 1110-1119.	2.9	71
29	A portable vibrator for muscle performance enhancement by means of direct muscle tendon stimulation. Medical Engineering and Physics, 2005, 27, 513-522.	1.7	26
30	The Use of Vibration Training to Enhance Muscle Strength and Power. Sports Medicine, 2005, 35, 23-41.	6.5	234
31	Autonomic Nervous Activity during Hand Immersion in Cold Water in Patients with Vibration-Induced White Finger Industrial Health, 2002, 40, 254-259.	1.0	18
32	Effect of vibration magnitude and repetitive exposure on finger blood flow in healthy subjects. International Archives of Occupational and Environmental Health, 2000, 73, 281-284.	2.3	15