Suramya Waidyanatha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2160897/publications.pdf

Version: 2024-02-01

471509 477307 1,141 87 17 29 citations h-index g-index papers 89 89 89 1445 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Chemical Research in Toxicology, 2021, 34, 189-216.	3.3	145
2	Rapid determination of six urinary benzene metabolites in occupationally exposed and unexposed subjects. Analytical Biochemistry, 2004, 327, 184-199.	2.4	88
3	From the Cover: Three-Dimensional (3D) HepaRG Spheroid Model With Physiologically Relevant Xenobiotic Metabolism Competence and Hepatocyte Functionality for Liver Toxicity Screening. Toxicological Sciences, 2017, 159, 124-136.	3.1	85
4	Albumin adducts of benzene oxide and 1,4-benzoquinone as measures of human benzene metabolism. Cancer Research, 2002, 62, 1330-7.	0.9	64
5	Measurement of hemoglobin and albumin adducts of naphthalene-1,2-oxide, 1,2-naphthoquinone and 1,4-naphthoquinone after administration of naphthalene to F344 rats. Chemico-Biological Interactions, 2002, 141, 189-210.	4.0	61
6	Evaluation of 5-day In Vivo Rat Liver and Kidney With High-throughput Transcriptomics for Estimating Benchmark Doses of Apical Outcomes. Toxicological Sciences, 2020, 176, 343-354.	3.1	45
7	Formation of Hemoglobin and Albumin Adducts of Benzene Oxide in Mouse, Rat, and Human Blood. Chemical Research in Toxicology, 1998, 11, 302-310.	3.3	44
8	How similar is similar enough? A sufficient similarity case study with Ginkgo biloba extract. Food and Chemical Toxicology, 2018, 118, 328-339.	3.6	32
9	Toxicokinetics of perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) in male and female Hsd:Sprague dawley SD rats following intravenous or gavage administration. Xenobiotica, 2020, 50, 722-732.	1.1	31
10	A strategy for test article selection and phytochemical characterization of Echinacea purpurea extract for safety testing. Food and Chemical Toxicology, 2020, 137, 111125.	3.6	23
11	Single Nucleotide Resolution Analysis Reveals Pervasive, Long-Lasting DNA Methylation Changes by Developmental Exposure to a Mitochondrial Toxicant. Cell Reports, 2020, 32, 108131.	6.4	22
12	Disposition of bisphenol AF, a bisphenol A analogue, in hepatocytes <i>in vitro</i> and in male and female Harlan Sprague-Dawley rats and B6C3F1/N mice following oral and intravenous administration. Xenobiotica, 2015, 45, 811-819.	1.1	21
13	Disposition and metabolism of the bisphenol analogue, bisphenol S, in Harlan Sprague Dawley rats and B6C3F1/N mice and in vitro in hepatocytes from rats, mice, and humans. Toxicology and Applied Pharmacology, 2018, 351, 32-45.	2.8	21
14	Hemoglobin and albumin adducts of naphthalene-1,2-oxide, 1,2-naphthoquinone and 1,4-naphthoquinone in Swiss Webster mice. Chemico-Biological Interactions, 2008, 172, 105-114.	4.0	20
15	Characterization of aqueous formulations of tetra- and pentavalent forms of vanadium in support of test article selection in toxicology studies. Environmental Science and Pollution Research, 2017, 24, 405-416.	5.3	20
16	Toxicokinetics of $\hat{l}\pm$ -thujone following intravenous and gavage administration of $\hat{l}\pm$ -thujone or $\hat{l}\pm$ - and \hat{l}^2 -thujone mixture in male and female F344/N rats and B6C3F1 mice. Toxicology and Applied Pharmacology, 2013, 271, 216-228.	2.8	18
17	14-day toxicity studies of tetravalent and pentavalent vanadium compounds in Harlan Sprague Dawley rats and B6C3F1/N mice via drinking water exposure. Toxicology Reports, 2016, 3, 531-538.	3.3	18
18	Evaluating Sufficient Similarity of Botanical Dietary Supplements: Combining Chemical and In Vitro Biological Data. Toxicological Sciences, 2019, 172, 316-329.	3.1	15

#	Article	IF	Citations
19	Follow that botanical: Challenges and recommendations for assessing absorption, distribution, metabolism and excretion of botanical dietary supplements. Food and Chemical Toxicology, 2018, 121, 194-202.	3.6	14
20	Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches. Analytical and Bioanalytical Chemistry, 2020, 412, 6789-6809.	3.7	14
21	Disposition of \hat{l}^2 -N-methylamino-l-alanine (L-BMAA), a neurotoxin, in rodents following a single or repeated oral exposure. Toxicology and Applied Pharmacology, 2018, 339, 151-160.	2.8	13
22	Systemic uptake, albumin and hemoglobin binding of [14C]2,3-butanedione administered by intratracheal instillation in male Harlan Sprague Dawley rats and oropharyngeal aspiration in male B6C3F1/N mice. Chemico-Biological Interactions, 2015, 227, 112-119.	4.0	12
23	Getting to the Root of the Matter: Challenges and Recommendations for Assessing the Safety of Botanical Dietary Supplements. Clinical Pharmacology and Therapeutics, 2018, 104, 429-431.	4.7	12
24	Formation of Epichlorohydrin, a Known Rodent Carcinogen, Following Oral Administration of 1,3-Dichloro-2-propanol in Rats. Chemical Research in Toxicology, 2014, 27, 1787-1795.	3.3	11
25	Disposition and metabolism of sulfolane in Harlan Sprague Dawley rats and B6C3F1/N mice and in vitro in hepatocytes from rats, mice, and humans. Xenobiotica, 2020, 50, 442-453.	1.1	11
26	Comparative toxicokinetics of Trans-resveratrol and its major metabolites in Harlan Sprague Dawley rats and B6C3F1/N mice following oral and intravenous administration. Toxicology and Applied Pharmacology, 2020, 394, 114962.	2.8	11
27	Evaluation of the respiratory tract toxicity of ortho-phthalaldehyde, a proposed alternative for the chemical disinfectant glutaraldehyde. Inhalation Toxicology, 2017, 29, 414-427.	1.6	10
28	Simultaneous Quantitation of 2-Hydroxy-4-Methoxybenzophenone, a Sunscreen Ingredient, and its Metabolites in Harlan Sprague Dawley Rat Plasma Following Perinatal Dietary Exposure. Journal of Analytical Toxicology, 2017, 41, 744-754.	2.8	10
29	Toxicokinetics and bioavailability of bisphenol AF following oral administration in rodents: A dose, species, and sex comparison. Toxicology and Applied Pharmacology, 2019, 373, 39-47.	2.8	10
30	Butylparaben multigenerational reproductive assessment by continuous breeding in Hsd:Sprague Dawley SD rats following dietary exposure. Reproductive Toxicology, 2020, 96, 258-272.	2.9	10
31	Exploration of xenobiotic metabolism within cell lines used for Tox21 chemical screening. Toxicology in Vitro, 2021, 73, 105109.	2.4	10
32	Measurement of styrene-7,8-oxide and other oxidation products of styrene in air. Journal of Environmental Monitoring, 2000, 2, 111-117.	2.1	9
33	Metabolism and disposition of [14C]n-butyl-p-hydroxybenzoate in male and female Harlan Sprague Dawley rats following oral administration and dermal application. Xenobiotica, 2013, 43, 169-181.	1.1	9
34	Dermal Exposure to Cumene Hydroperoxide. Toxicologic Pathology, 2016, 44, 749-762.	1.8	9
35	Black cohosh extracts and powders induce micronuclei, a biomarker of genetic damage, in human cells. Environmental and Molecular Mutagenesis, 2018, 59, 416-426.	2.2	9
36	Characterization and Quantification of Cysteinyl Adducts of Benzene Diol Epoxide. Chemical Research in Toxicology, 2005, 18, 1178-1185.	3.3	8

#	Article	IF	Citations
37	Exposure to butyl paraben during gestation and lactation in Hsd:Sprague dawley SD rats via dosed feed. Toxicology Reports, 2016, 3, 774-783.	3.3	8
38	A Black Cohosh Extract Causes Hematologic and Biochemical Changes Consistent with a Functional Cobalamin Deficiency in Female B6C3F1/N Mice. Toxicologic Pathology, 2017, 45, 614-623.	1.8	8
39	Embryoâ \in fetal development studies with the dietary supplement vinpocetine in the rat and rabbit. Birth Defects Research, 2018, 110, 883-896.	1.5	8
40	Systemic exposure to Ginkgo biloba extract in male F344/NCrl rats: Relevance to humans. Food and Chemical Toxicology, 2019, 131, 110586.	3.6	8
41	Metabolism and disposition of 2-ethylhexyl- <i>p</i> -methoxycinnamate following oral gavage and dermal exposure in Harlan Sprague Dawley rats and B6C3F1/N mice and in hepatocytes <i>in vitro</i> . Xenobiotica, 2018, 48, 1142-1156.	1.1	7
42	Investigation of cysteinyl protein adducts of benzene diolepoxide. Chemico-Biological Interactions, 2005, 153-154, 261-266.	4.0	6
43	Disposition of [14C]hydroquinone in Harlan Sprague-Dawley rats and B6C3F1/N mice: species and route comparison. Xenobiotica, 2018, 48, 1128-1141.	1.1	6
44	Toxicokinetics and bioavailability of sulfolane, a ground water contaminant, following oral and intravenous administration in rodents: A dose, species, and sex comparison. Toxicology and Applied Pharmacology, 2019, 379, 114690.	2.8	6
45	Comparative toxicokinetics of bisphenol S in rats and mice following gavage administration. Toxicology and Applied Pharmacology, 2020, 406, 115207.	2.8	6
46	Postnatal Effects of Gestational and Lactational Gavage Exposure to Boric Acid in the Developing Sprague Dawley Rat. Toxicological Sciences, 2020, 176, 65-73.	3.1	6
47	Characterization of Zinc Carbonate Basic as a Source of Zinc in a Rodent Study Investigating the Effects of Dietary Deficiency or Excess. Analytical Letters, 2017, 50, 2447-2464.	1.8	5
48	Systemic exposure of vinpocetine in pregnant Sprague Dawley rats following repeated oral exposure: An investigation of fetal transfer. Toxicology and Applied Pharmacology, 2018, 338, 83-92.	2.8	5
49	Metabolism and disposition of 2-hydroxy-4-methoxybenzophenone, a sunscreen ingredient, in Harlan Sprague Dawley rats and B6C3F1/N mice; a species and route comparison. Xenobiotica, 2020, 50, 689-704.	1.1	5
50	Disposition and metabolism of N-butylbenzenesulfonamide in Sprague Dawley rats and B6C3F1/N mice and in vitro in hepatocytes from rats, mice, and humans. Toxicology Letters, 2020, 319, 225-236.	0.8	5
51	Multigenerational reproductive assessment of 4-methylimidazole administered in the diet to Hsd:Sprague Dawley SD rats. Reproductive Toxicology, 2020, 98, 13-28.	2.9	5
52	Tolerability and ageâ€dependent toxicokinetics following perinatal hydroxyurea treatment in Sprague Dawley rats. Journal of Applied Toxicology, 2021, 41, 1007-1020.	2.8	5
53	Mutational analysis of pentabrominated diphenyl-induced hepatocellular tumors in rats and mice, tissue levels of PBDE congeners in rats and mice, and AhR genotyping of Wistar Han rats. Data in Brief, 2018, 21, 2125-2128.	1.0	4
54	Reduced Disc Shedding and Phagocytosis of Photoreceptor Outer Segment Contributes to Kava Kava Extract–induced Retinal Degeneration in F344/N Rats. Toxicologic Pathology, 2018, 46, 564-573.	1.8	4

#	Article	IF	Citations
55	Hepatic Transcriptomic Patterns in the Neonatal Rat After Pentabromodiphenyl Ether Exposure. Toxicologic Pathology, 2020, 48, 338-349.	1.8	4
56	Qualitative and Quantitative Neuropathology Approaches Using Magnetic Resonance Microscopy (Diffusion Tensor Imaging) and Stereology in a Hexachlorophene Model of Myelinopathy in Sprague-Dawley Rats. Toxicologic Pathology, 2020, 48, 965-980.	1.8	4
57	Short-term perinatal toxicity study in sprague Dawley rats with the plasticizer and emerging contaminant N-Butylbenzenesulfonamide. Toxicology Letters, 2020, 330, 159-166.	0.8	4
58	Comparative toxicokinetics of bisphenol S and bisphenol AF in male rats and mice following repeated exposure via feed. Xenobiotica, 2021, 51, 210-221.	1.1	4
59	Internal dose of vanadium in rats following repeated exposure to vanadyl sulfate and sodium orthovanadate via drinking water. Toxicology and Applied Pharmacology, 2021, 412, 115395.	2.8	4
60	Quantitation of Total Vanadium in Rodent Plasma and Urine by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS). Analytical Letters, 2021, 54, 2777-2788.	1.8	4
61	Validation of Analytical Method for Determination of Thallium in Rodent Plasma and Tissues by Inductively Coupled Plasma–Mass Spectrometry (ICP-MS). Analytical Letters, 2022, 55, 1269-1280.	1.8	4
62	Oral deoxynivalenol toxicity in Harlan Sprague Dawley (Hsd:Sprague Dawley® SD®) rat dams and their offspring. Food and Chemical Toxicology, 2021, 148, 111963.	3.6	3
63	Working with the natural complexity: Selection and characterization of black cohosh root extract for use in toxicology testing. Food and Chemical Toxicology, 2022, 160, 112769.	3.6	3
64	Systemic exposure and urinary excretion of vanadium following perinatal subchronic exposure to vanadyl sulfate and sodium metavanadate via drinking water. Toxicology Letters, 2022, 360, 53-61.	0.8	3
65	The common indoor air pollutant α-pinene is metabolised to a genotoxic metabolite α-pinene oxide. Xenobiotica, 2022, 52, 301-311.	1.1	3
66	Clarification and lessons learned for reporting studies with hydrates. Citation: Roberts et al., 2016. Toxicology Reports 3: 531–538. Toxicology Reports, 2018, 5, 207-208.	3.3	2
67	Disposition and metabolism of antibacterial agent, triclocarban, in rodents; a species and route comparison. Xenobiotica, 2020, 50, 1469-1482.	1.1	2
68	Toxicokinetics of the plasticizer, N-butylbenzenesulfonamide, in plasma and brain following oral exposure in rodents: Route, species, and sex comparison. Toxicology Reports, 2020, 7, 711-722.	3.3	2
69	An investigation of systemic exposure to bisphenol AF during critical periods of development in the rat. Toxicology and Applied Pharmacology, 2021, 411, 115369.	2.8	2
70	Development and Validation of an Analytical Method for Quantitation of Alpha-Pinene Oxide in Rodent Blood and Mammary Glands by GC–MS. Journal of Analytical Toxicology, 2021, , .	2.8	2
71	Toxicokinetic evaluation of the common indoor air pollutant, α-pinene, and its potential reactive metabolite, α-pinene oxide, following inhalation exposure in rodents. Toxicology and Applied Pharmacology, 2021, 418, 115496.	2.8	2
72	Phenolic benzotriazoles: a class comparison of toxicokinetics of ultraviolet-light absorbers in male rats. Xenobiotica, 2021, 51, 831-841.	1.1	2

#	Article	IF	CITATIONS
73	Development and Validation of an Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry Method for Quantitation of Total 3,3',5-triiodo-L-Thyronine and 3,3',5,5'-tetraiodo-L-Thyronine in Rodent Serum. Analytical Letters, 2022, 55, 796-811.	1.8	2
74	Plasma concentrations of tris(1-chloro-2-propyl) phosphate and a metabolite bis(2-chloroisopropyl) 1-carboxyethyl phosphate in Sprague-Dawley rats and B6C3F1/N mice from a chronic study of tris(chloropropyl) phosphate via feed. Toxicology Reports, 2022, 9, 690-698.	3.3	2
75	Metabolism and disposition of 2-methoxy-4-nitroaniline in male and female Harlan Sprague Dawley rats and B6C3F ₁ /N mice. Xenobiotica, 2012, 42, 1213-1224.	1.1	1
76	Metabolism and disposition of [14C]dimethylamine borane in male Harlan Sprague Dawley rats following gavage administration, intravenous administration and dermal application. Xenobiotica, 2014, 44, 36-47.	1.1	1
77	Response to the letter to the editor for embryoâ€fetal development studies with the dietary supplement vinpocetine in the rat and rabbit. Birth Defects Research, 2018, 110, 1374-1375.	1.5	1
78	Disposition of <i>tris</i> (4-chlorophenyl)methanol and <i>tris</i> (4-chlorophenyl)methane in male and female Harlan Sprague Dawley rats and B6C3F1/N mice following oral and intravenous administration. Xenobiotica, 2019, 49, 484-494.	1.1	1
79	Disposition and metabolism of 2′,2′―Dithiobisbenzanilide in rodents following intravenous and oral administration and dermal application. Toxicology Reports, 2020, 7, 883-892.	3.3	1
80	Disposition and metabolism of 2,2′-dimorpholinodiethyl ether in sprague dawley rats and B6C3F1/N mice after oral, intravenous administration, and dermal application. Xenobiotica, 2020, 50, 1341-1351.	1.1	1
81	Development and Validation of an Analytical Method to Quantitate Hydroxycitric Acid, the Key Constituent in <i>Garcinia cambogia</i> Extract, in Rodent Plasma and Fetus. Analytical Letters, 2022, 55, 1-16.	1.8	1
82	Disposition of fragrance ingredient [¹⁴ C]1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone in male Fisher rats following oral administration and dermal application. Xenobiotica, 2014, 44, 749-756.	1.1	0
83	Evaluation of 4-methylcyclohexanemethanol (MCHM) in a combined irritancy and Local Lymph Node Assay (LLNA) in mice. Food and Chemical Toxicology, 2017, 105, 99-105.	3.6	0
84	Disposition and metabolism of ethylene glycol 2-ethylhexyl ether in Sprague Dawley rats, B6C3F1/N mice, and <i>inÂvitro</i> in rat hepatocytes. Xenobiotica, 2021, 51, 1-14.	1.1	0
85	Validated Gas Chromatography – Mass Spectrometry (GC-MS) Method for Simultaneous Quantitation of Tris(4-Chlorophenyl)Methane and Tris(4-Chlorophenyl)Methanol in Rat Plasma and Fetus. Analytical Letters, 2022, 55, 539-554.	1.8	0
86	Response to Letter to the Editor regarding "Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approachesâ€. Analytical and Bioanalytical Chemistry, 2021, 413, 7627-7629.	3.7	0
87	Quantitation of Phenolic Benzotriazole Class Compounds in Plasma by Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). Analytical Letters, 0, , 1-15.	1.8	O